
R

E

D

obust and

fficient

igital Signal Processing

Gerhard Schmidt

Digital Signal Processing and System�eory

Kiel University

Germany

2017

2

Contents

I Basics 5

1 Fast Convolution 7

1.1 Problem . 7

1.2 References . 7

1.3 Code Examples . 7

1.4 Authors of this Chapter . 10

2 Recursive Norm Computation 11

2.1 Problem . 11

2.2 Recursive Computation . 12

2.3 Mixed Recursive/Iterative Computation . 13

2.4 References . 14

2.5 Code Examples . 14

2.6 Authors of this Chapter . 18

3 Prediction-based Filter Design 19

3.1 Basics . 19

3.2 Application Examples . 19

3.3 References . 21

3.4 Authors of this Chapter . 22

4 Complex Magnitude Approximations 23

4.1 Problem . 23

4.2 A Very Simple Approximation . 23

4.3 A Better Approximation . 23

4.4 References . 23

4.5 Authors of this Chapter . 24

3

4 CONTENTS

Part I

Basics

5

Chapter 1

Fast Convolution Without Additional

Delay

written by Gerhard Schmidt, Anton Namenas, Seedo Eldho Paul

�is chapter is about numerically robust ways for
recursive norm computation. In contrast to iter-
ative norm computations, which are numerically
very accurate and robust, recursive approaches of-
fer a large reduction in computational complex-
ity. However, a�er several thousand iterations er-
ror accumulation appear. To avoid this a mixed it-
erative and recursive approach is proposed that is
“cheap” in complexity and robust with respect to
error accumulation.

Contents:

2.1 Problem 11
2.5 Code Examples 14
2.6 Authors 18

1.1 Problem

In several signal processing applications

1.2 References

[1] E. Hänsler, G. Schmidt: Acoustic Echo and Noise Control, Wiley, 2004.

1.3 Code Examples

Remark:

�e following code example can be

downloaded via the RED website.

%**
% Basic parameters

%**
N = 588; % Filter lenght

7

8

r = 64; % Frameshift

N_FFT = 128; % FFT size

%**
% Input signal (white Gaussian noise)

%**
x = randn(5000,1); % Input signal

%**
% Impulse response (white Gaussian noise)

%**
h = randn(N,1); % Impulse response

%**
% Pure time−domain convolution

%**
y = conv(x,h); % output signal

%**
% Mixed−domain convolution

%**

%**
% Initialization

%**
x_td_buffer = zeros(N_FFT,1);

h_td = h(1:N_FFT);

y_td = zeros(size(x));

y_fd_res_buffer = zeros(size(x));

y_td_curr = zeros(N_FFT,1);

k_fd = 0;

M = ceil((N−2*r)/r);
X_fd_buffer = zeros(N_FFT/2+1,M);

H_fd_buffer = zeros(N_FFT/2+1,M);

%**
% Fill the frequency−domain filter coefficients

%**
h_ind = N_FFT;

% Loop over all frames

for m = 1:M

%**
% Reset impulse response vector

%**
h_curr = zeros(r,1);

%**
% Fill the vector with the corresponding parts of the impulse res.

%**
for n = 1:r

h_ind = h_ind + 1;

if (h_ind <= N)

h_curr(n) = h(h_ind);

end;

end;

%**
% Compute FFT

%**

1.3. CODE EXAMPLES 9

H_curr = fft(h_curr,N_FFT);

H_fd_buffer(:,m) = H_curr(1:N_FFT/2+1);

end;

%**
% Main loop

%**
for k = 1:length(x)

%**
% Update counters

%**
k_fd = k_fd + 1;

if (k_fd > r)

k_fd = 1;

end;

%**
% Update the buffer

%**
x_td_buffer(1:end−1) = x_td_buffer(2:end);

x_td_buffer(end) = x(k);

%**
% Generate time−domain based part of the output

%**
y_td(k) = x_td_buffer(end:−1:1)' * h_td + y_fd_res_buffer(k_fd);

%**
% Start subsampled processing

%**
if (k_fd == r)

%***
% Save the result of the previous background processing

%***
y_fd_res_buffer = y_td_curr(r+1:end);

%***
% Compute FFT on the input, if one full frame is available

%***
X_curr = fft(x_td_buffer,N_FFT);

X_curr = X_curr(1:N_FFT/2+1);

%***
% Update the FFT buffer

%***
X_fd_buffer(:,2:M) = X_fd_buffer(:,1:M−1);
X_fd_buffer(:,1) = X_curr;

%***
% Compute the frequency−domain convolution output

%***
Y_fd = zeros(N_FFT/2+1,1);

for m = 1:M

Y_fd = Y_fd + X_fd_buffer(:,m) .* H_fd_buffer(:,m);

end;

%***
% Compute inverse FFT of the output

%***

10

Y_fd_curr = [Y_fd; conj(Y_fd(end−1:−1:2))];
y_td_curr = ifft(Y_fd_curr);

end;

end;

%**
% Show the result of both convolutions

%**
offset = 2;

lw = 1;

figure(1);

plot(y(1:500),'b','LineWidth',lw);

hold on

plot(y_td(1:500)+offset,'r','LineWidth',lw);

grid on

hold off

legend('Output (time domain)', ...

['Output (mixed domain) + ',num2str(offset)]);

xlabel('Samples')

1.4 Authors of this Chapter

Gerhard Schmidt received the Dipl.-Ing. and Dr.-Ing. degrees from the Darmstadt Uni-
versity of Technology, Darmstadt, Germany, in 1996 and 2001, respectively. A�er the Dr.-
Ing. degree, he worked in the research groups of the Acoustic Signal Processing Depart-
ment, Harman/Becker Automotive Systems and at SVOX, Ulm, Germany. Parallel to his
time at SVOX, he was a part-time Professor with the Darmstadt University of Technol-
ogy. Since 2010, he has been a Full Professor with Kiel University, Germany. His main
research interests include adaptive methods for speech, audio, underwater, and medical
signal processing.

Tim OweWisch received the B.Sc. and M.Sc. degrees from Kiel University, Germany, in
2015 and 2017, respectively. Since his M.Sc. graduation he works as a research assistant
in the Digital Signal Processing and System�eory group at Kiel University. His research
focus is on underwater communication and SONAR signal processing.

Katharina Rebbe received the B.Sc. and M.Sc. degrees from Kiel University, Germany,
in 2016 and 2017, respectively. Since her M.Sc. graduation she works as a development
engineer.

Chapter 2

Recursive Computation of Signal Vector

Norms

written by Gerhard Schmidt, Owe Wisch, Katharina Rebbe

�is chapter is about numerically robust ways for
recursive norm computation. In contrast to iter-
ative norm computations, which are numerically
very accurate and robust, recursive approaches of-
fer a large reduction in computational complex-
ity. However, a�er several thousand iterations er-
ror accumulation appear. To avoid this a mixed it-
erative and recursive approach is proposed that is
“cheap” in complexity and robust with respect to
error accumulation.

Contents:

2.1 Problem 11
2.2 Recursive Computation 12
2.3 Mixed Computation 13
2.4 References 14
2.5 Code Examples 14
2.6 Authors 18

2.1 Problem

In several signal processing applications signal vectors that contain the last N sample are utilized. �ose
vectors are usually de�ned as

x(n) = [x(n), x(n − 1), x(n − 2), ..., x(n − N + 1)]
T

. (2.1)

Furthermore, some applications require to compute the squared norm of such vectors. A direct computation
according to

∥x(n)∥2 =
N−1

∑
i=0

x2(n − i) (2.2)

is numerically quite robust, but requires also N multiplications and N − 1 additions every sample. In order to
show the numerical robustness, we generated a signal that containswhiteGaussian noise. Every 1000 samples
we varied the power by 20 dB (up and down in an alternating fashing). From that signal we extracted signal
vectors of length N = 128 and computed the squared norm according to Eq. (2.2) in �oating point precision,
once with 64 bits and once with 32 bits and depict the results in a logarithmic fashion in Fig. 2.1. Additionally,
the di�erence between the two versions is shown in the lowest diagram.

11

12 CHAPTER 2. RECURSIVE NORMCOMPUTATION
A

m
pl

itu
de

-5000

0

5000

Input signal

dB

60

80

100

120

Norm in double precision
Iteratively computed norm (lifted by 1 dB)

Samples
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

-1000

0

1000

Difference between the norm in high precision and the iteratively computed norm

Figure 2.1: Input signal and iterative norm computations.

2.2 Recursive Computation

Remark:

�e following ideas (and the solu-

tions) can also be used for other recur-

sive computations such as mean esti-

mations y(n) = 1
N ∑

N−1
i=0 x(n − i).

If the norm of the signal vector has to be computed every sample, o�en recursive
computations are favoured since this lead to a signi�cant reduction of computational
complexity – especially for signal vectors with a large amount of elements [1]. �e
recursive variant starts with an initialization. Is is assumed that the signal vector
contains zeros at time index n = 0 and thus also the squared norm is initialized with
zero:

x(0) = [0, 0, 0, ..., 0]T , (2.3)

∥x(0)∥2 = 0. (2.4)

Since with every sample only one new sample value is added to the signal vector and one sample value (the
oldest) is leaving the vector, the norm can be computed recursively according to

∥x(n)∥2 = ∥x(n − 1)∥2 + x2(n) − x2(n − N). (2.5)

Using this "trick" only twomultiplications and two additions are required to update the norm. However, from
a numerical point-of-view, this computation is not as robust as the direct approach according to Eq. (2.2).

�e problem with the recursive computation according to Eq. (2.5) is that a squared signal value x2(n) is
used twice in the update rule:

• once when it enters the signal vector and

• once when it leaves the vector.

If the computation is done in �oating-point arithmetic �rst the mantissa of the values that should be added
or subtracted are adjusted (shi�ed) such that the exponents of both values are equal. �is can be interpreted

2.3. MIXED RECURSIVE/ITERATIVE COMPUTATION 13
A

m
pl

itu
de

-5000

0

5000

Input signal

dB

60

80

100

120

Norm in double precision
Recursively computed norm (lifted by 1 dB)

Samples
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

-1000

0

1000

Difference between the norm in high precision and the recursively computed norm

Figure 2.2: Input signal and recursive as well as iterative norm computations.

as some sort of quantization. If the norm value has changed between the "entering" and the "leaving" event,
a small error occurs. Unfortunately, this error is biased and thus error accumulation appears.

Usually, this is not critical, because the error is really small, but if the signal has large power variations and
the recursion is performed several thousand times, the small error might become rather large.

Due to that problem the norm might get negative, which leads – in some cases – to severe problems. E.g.
several gradient based optimizations perform a division by the norm of the excitation vector. If the norm
gets negative it means that the direction of the gradient is switched and divergence might be the result. �is
could be avoided by limiting the result of the recursive computation by the value 0:

∥x(n)∥2 = max{0, ∥x(n − 1)∥2 + x2(n) − x2(n − N)}. (2.6)

�is improves robustness, but does not help against error accumulation as depicted in Fig. 2.2.

2.3 Mixed Recursive/Iterative Computation

A solution to this error accumulation problem is the extent the recursive computation according to Eq. (2.6)
by an iterative approach that "refreshes" the recursive update from time to time. �is can be realized by adding
in a separate variable Nrec(n) all squared input samples:

Nrec(n) =
⎧⎪⎪⎨⎪⎪⎩

x2(n), if mod (n,N) ≡ 0,

Nrec(n − 1) + x2(n), else.
(2.7)

If N samples are added this variable is replacing to the recursively computed norm and the original sum
Nrec(n) is reinitialized with 0:

14

∥x(n)∥2 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Nrec(n), if mod (n,N) ≡ N − 1,

max{0, ∥x(n − 1)∥2 + x2(n) − x2(n − N)}, else.
(2.8)

�e additional mechanism adds only a few additions, but helps a lot against error accumulation as indicated
in the last example of this section depicted in Fig. 2.3. �us, if you face problems with norms of signal vectors
you might think about using this mixed method.

A
m

pl
itu

de

-5000

0

5000

Input signal

dB

60

80

100

120

Norm in double precision
Recursively and iteratively computed norm (with limitation, lifted by 1 dB)

Samples
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

-1000

0

1000

Difference between the norm in high precision and the recursively and iteratively computed norm (with limitation)

Figure 2.3: Input signal and mixed recursive/iterative as well as purely iterative norm computations.

2.4 References

[1] E. Hänsler, G. Schmidt: Acoustic Echo and Noise Control, Wiley, 2004.

2.5 Code Examples

Remark:

�e following code example can be

downloaded via the RED website.

%**
% Parameters

%**
N = 128;

Sig_duration = 10000;

%**
% Generate input signal

%**

2.5. CODE EXAMPLES 15

% Generate white Gaussian noise

sig = single(randn(Sig_duration,1));

% Boost every second 1000 signal values by 60 dB

for k = 1001:2000:Sig_duration;

sig(k−1000:k) = sig(k−1000:k) * 1000;

end;

%**
% Compute norms

%**
x_vec = single(zeros(N,1));

Norm_rec_curr = single(0);

Norm_rec_curr_lim = single(0);

N_rec = single(0);

C_rec = single(0);

Norm_mixed_curr = single(0);

N_rec_lim = single(0);

C_rec_lim = single(0);

Norm_mixed_lim_curr = single(0);

Norm_double_prec = zeros(Sig_duration,1);

Norm_iterative = single(zeros(Sig_duration,1));

Norm_recursive = single(zeros(Sig_duration,1));

Norm_recursive_lim = single(zeros(Sig_duration,1));

Norm_mixed = single(zeros(Sig_duration,1));

Norm_mixed_lim = single(zeros(Sig_duration,1));

for k = 1:Sig_duration

%**
% Update signal vector (not very efficient, but o.k. for here

%**
x_new = sig(k);

x_old = x_vec(N);

x_vec(2:N) = x_vec(1:N−1);
x_vec(1) = x_new;

%**
% Norm in double precicion

%**
Norm_double_prec(k) = double(x_vec)' * double(x_vec);

%**
% Iterative norm (of course, there exixt optimized Matlab functions

% for this purpose, but that's another "story")

%**
for n = 1:N

Norm_iterative(k) = Norm_iterative(k) + x_vec(n)*x_vec(n);

end;

%**
% Recursive norm computation

%**
Norm_rec_curr = Norm_rec_curr + x_new^2 − x_old^2;

Norm_recursive(k) = Norm_rec_curr;

%**
% Recursive norm computation

%**
Norm_rec_curr_lim = Norm_rec_curr_lim + x_new^2 − x_old^2;

16

Norm_rec_curr_lim = max(0, Norm_rec_curr_lim);

Norm_recursive_lim(k) = Norm_rec_curr_lim;

%**
% Mixed compuation of the norm

%**
Norm_mixed_curr = Norm_mixed_curr + x_new^2 − x_old^2;

C_rec = C_rec + 1;

if (C_rec == N)

C_rec = 0;

end;

if (C_rec == 0)

N_rec = 0;

end;

N_rec = N_rec + + x_new^2;

if (C_rec == N−1)
Norm_mixed_curr = N_rec;

end;

Norm_mixed(k) = Norm_mixed_curr;

%**
% Mixed compuation of the norm with limiation

%**
Norm_mixed_lim_curr = Norm_mixed_lim_curr + x_new^2 − x_old^2;

Norm_mixed_lim_curr = max(0,Norm_mixed_lim_curr);

C_rec_lim = C_rec_lim + 1;

if (C_rec_lim == N)

C_rec_lim = 0;

end;

if (C_rec_lim == 0)

N_rec_lim = 0;

end;

N_rec_lim = N_rec_lim + + x_new^2;

if (C_rec_lim == N−1)
Norm_mixed_lim_curr = N_rec_lim;

end;

Norm_mixed_lim(k) = Norm_mixed_lim_curr;

end;

%**
% Show results

%**
fig = figure(1);

set(fig,'Units','Normalized');

set(fig,'Position',[0.1 0.1 0.8 0.8]);

t = 0:Sig_duration−1;

subplot('Position',[0.07 0.8 0.9 0.17]);

plot(t,10*log10(Norm_double_prec),'b', ...

t,10*log10(max(0.01, Norm_iterative))+1,'r');

grid on

2.5. CODE EXAMPLES 17

set(gca,'XTickLabel','');

ylabel('dB')

legend('Norm in double precision', ...

'Iteratively computed norm (lifted by 1 dB)');

axis([0 Sig_duration−1 0 120]);

subplot('Position',[0.07 0.62 0.9 0.17]);

plot(t,10*log10(Norm_double_prec),'b', ...

t,10*log10(max(0.01, Norm_recursive))+1,'r');

grid on

set(gca,'XTickLabel','');

ylabel('dB')

legend('Norm in double precision', ...

'Recursively computed computed norm (lifted by 1 dB)');

axis([0 Sig_duration−1 0 120]);

subplot('Position',[0.07 0.44 0.9 0.17]);

plot(t,10*log10(Norm_double_prec),'b', ...

t,10*log10(max(0.01, Norm_recursive_lim))+1,'r');

grid on

set(gca,'XTickLabel','');

ylabel('dB')

legend('Norm in double precision', ...

'Recursively computed computed norm with limitation (lifted by 1 dB)');

axis([0 Sig_duration−1 0 120]);

subplot('Position',[0.07 0.26 0.9 0.17]);

plot(t,10*log10(Norm_double_prec),'b', ...

t,10*log10(max(0.01, Norm_mixed))+1,'r');

grid on

set(gca,'XTickLabel','');

ylabel('dB')

legend('Norm in double precision', ...

'Mixed recursively/iteratively computed norm (lifted by 1 dB)');

axis([0 Sig_duration−1 0 120]);

subplot('Position',[0.07 0.08 0.9 0.17]);

plot(t,10*log10(Norm_double_prec),'b', ...

t,10*log10(max(0.01, Norm_mixed_lim))+1,'r');

grid on

xlabel('Samples');

ylabel('dB')

legend('Norm in double precision', ...

'Mixed recursively/iteratively computed norm with limitation (lifted by 1 dB)');

axis([0 Sig_duration−1 0 120]);

18

2.6 Authors of this Chapter

Gerhard Schmidt received the Dipl.-Ing. and Dr.-Ing. degrees from the Darmstadt Uni-
versity of Technology, Darmstadt, Germany, in 1996 and 2001, respectively. A�er the Dr.-
Ing. degree, he worked in the research groups of the Acoustic Signal Processing Depart-
ment, Harman/Becker Automotive Systems and at SVOX, Ulm, Germany. Parallel to his
time at SVOX, he was a part-time Professor with the Darmstadt University of Technol-
ogy. Since 2010, he has been a Full Professor with Kiel University, Germany. His main
research interests include adaptive methods for speech, audio, underwater, and medical
signal processing.

Tim OweWisch received the B.Sc. and M.Sc. degrees from Kiel University, Germany, in
2015 and 2017, respectively. Since his M.Sc. graduation he works as a research assistant
in the Digital Signal Processing and System�eory group at Kiel University. His research
focus is on underwater communication and SONAR signal processing.

Katharina Rebbe received the B.Sc. and M.Sc. degrees from Kiel University, Germany,
in 2016 and 2017, respectively. Since her M.Sc. graduation she works as a development
engineer.

Chapter 3

Prediction-based Filter Design

written by Gerhard Schmidt

In this chapter we will discuss how linear predic-
tion can be used for designing �lters with an ar-
bitrary frequency response. �e described design
schemes can be used to implement real-time �lter
design applications that can work also on very sim-
ple hardware.

Contents:

3.1 Basics 19
3.2 Application Examples 19
3.3 References 21
3.4 Authors 22

3.1 Basics

In this chapter we will discuss how linear prediction can be used for designing �lters with an arbitrary fre-
quency response. Since linear predictors are used in a variety of applications (e.g. speech coding) various
implementations exist, that solve the so-called normal equations in a robust and e�cient manner. �ese
schemes can be reused to implement real-time �lter design applications that can work also on very simple
hardware.

3.2 Application Examples

Remark:

Before we start with the derivation of

the �lter design itself, the following

applications should motivate the de-

sign process.

Prediction in general means to forecast signal samples that are not yet available (for-
ward prediction) or to reestablish already forgotten samples (backward prediction).
With this capability predictors play an important role in signal processing wherever
it is desirable, for instance, to reduce the amount of data to be transmitted or stored.
Examples for the use of predictors are encoders for speech or video signals.

However, linear prediction can also be used for several other applications:

• Loudspeaker equalization

To improve the playback quality of loudspeakers equalization �lters might be placed before the DA
converters of playback devices (see Fig. 3.1). �ese �lters are designed such that the frequency re-
sponse of the system consisting of the loudspeaker itself and the equalization �lter should be close to
a prede�ned curve.

19

20 CHAPTER 3. PREDICTION-BASED FILTER DESIGN

v(n) y(n)

Equalization �lter

Loudspeaker

Figure 3.1: Basic structure of loudspeaker equalization schemes.

If more than one loudspeaker should be equalized o�en additional restrictions such as linear phase
behaviour (constant group delay) are desired. Fig. 3.2 shows an example of such a desired frequency
response together with a non-equalized loudspeaker and its equalized counterpart.

Normalized frequency Ω/π
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

dB

-20

0

20

40

Desired magnitude response
Magnitude response of the equalized loudspeaker

dB

-20

0

20

40

Desired magnitude response
Magnitude response of the loudspeaker (without equalization)

Figure 3.2: Magnitude responses of the non-equalized and the equalized loudspeaker.

• Low-delay noise suppression

Whenever a desired signal is superimposed by noise signal enhancement techniques can be applied
(see Fig. 3.3). Usually, statistically optimized, time-variant �lters such as so-calledWiener �lters [1] are
utilized here.

v(n) y(n)

Time-varying, minimum-phase �lter

Microphone

Figure 3.3: Low-delay noise suppression.

�ose approaches are usually realized in the short-term Fourier domain. However, if the delay that is
inserted by the Fourier transforms is too large, time-domain approaches with low-order minimum-
phase �lters might be an alternative solution. �e design of these �lters can be prediction-based [2, 3].

3.3. REFERENCES 21

Fig. 3.4 shows an example of a noisy speech signal (�lter input) and the corresponding noise-reduced
signal (�lter output).

Time in seconds
0 0.5 1 1.5 2 2.5 3

-1

-0.5

0

0.5

1
Noise-reduced signal (filter output)

-1

-0.5

0

0.5

1
Noisy signal (filter input)

Figure 3.4: Signal before and a�er noise suppression.

• Signal generation

As a last application so-called general purpose noise or signal generators can be mentioned. �ey are
build usually by a white noise generator (either with Gaussian or uniform amplitude distribution)
and a succeeding shaping �lter for adjusting the power spectral density (PSD) of the output �lter (see
Fig. 3.5).

v(n) y(n)

Shaping �lterNoise generator

Figure 3.5: Signal generation.

Since the input PSD is constant (white noise) the shaping �ltermust be designed such that its frequency
response (respectively the squared magnitude of it) is the same as the desired PSD. Fig. 3.6 shows an
example of in input and output PSDs (in blue) together with the desired PSD (in grey).

3.3 References

[1] E. Hänsler, G. Schmidt: Acoustic Echo and Noise Control, Wiley, 2004.

[2] H. Löllmann, P. Vary: Low Delay Filter for Adaptive Noise Reduction, Proc. IWAENC ’05, Eindhoven,
�e Netherlands, pp. 205 - 208, 2005.

22

Normalized frequency Ω/π
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

dB

-40

-20

0

20

40
Desired magnitude response
Estimated power speactral dessity of the filter output

dB

-40

-20

0

20

40
Desired power spectral desnity
Estimated power speactral dessity of the filter input

Figure 3.6: Power spectral density before and a�er the shaping �lter.

[3] H. Löllmann, P. Vary: A Filter Structure for Low Delay Noise Suppression, Proc. ITG-Fachtagung ’06,
Kiel, Germany, 2006.

3.4 Authors of this Chapter

Gerhard Schmidt Text GUS

Chapter 4

Complex Magnitude Approximations

written by Gerhard Schmidt

�is chapter starts with a brief introduction in tele-
phony with special emphasis on hands-free sys-
tems. Secondly the main outline of this book is
described and the notation used in the remaining
chapters is explained.

Contents:

4.1 Problem 23
4.2 A Very Simple Approximation 23
4.3 A Better Approximation 23
4.4 References 23
4.5 Authors 24

4.1 Problem

- Need for magnitude instead of magnitude square values

- Complexity of square root computations

4.2 A Very Simple Approximation

Some text ...

4.3 A Better Approximation

Some text ...

4.4 References

[1] �e New Bell Telephone, Sci. Am. 38(1), 1(1877).

23

24

4.5 Authors of this Chapter

Gerhard Schmidt Text GUS

