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Chapter 1

Removal of Signal Trends
written by Christin Bald, Julia Kreisel, and Gerhard Schmidt

This chapter is about the removal of the offset
– also referred to astrend– of a signal. There-
fore three different methods are introduced and
compared against each other: subtracting a pri-
ori knowledge, highpass filtering, and a nonlin-
ear, time-variant method. The presented meth-
ods are numerically robust and computationally
efficient. The performances of the methods are
demonstrated by removing the trend of a mag-
netically measured heart signal.
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1 Problem

Remark:

The MCG signals depicted on the

next page and used in the following

examples can be downloaded as wav

files from the REDwebsite.

In several applications signals are recorded that contain an offset. Sometimes the
offset carries information – in these cases this signal component should not be re-
moved. However, in a variety of applications one is interested mainly in the tempo-
ral variations of the signal (and not in the offset). In thesecases a simple (meaning
computationally efficient) and robust offset or so-calledtrend removal can be ap-
plied. This allows follow-up signal processing to be a bit simpler, e.g. thresholds
do not have to be adjusted to the offset.

Examples for such signals are ECG or MCG signals, where ECG abbreviates electrocardiogram and MCG
its magnetic counterpart, magnetocardiogram. Since the authors work with the analysis of both we will use
MCG signals as an example. Fig.1.1shows two signals that were recorded at the same time but at different
positions.

MCG signals show the same cardiac cycle as known from ECG signals. One heart cycle consists of a P
wave, a QRS complex, and a T wave [2]. The first wave is the P wave in which the atria contraction is
described. The QRS complex is the combination of the Q, R and Swave showing the beginning of the
contraction of the ventricle. The start of the T wave describes the beginning of the relaxation. The offset
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Removal of Signal Trends by Highpass Filtering
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Figure 1.1: MCG (magnetocardiogram) input signals.

means an almost constant shifting from zero.

2 A Simple Method to Remove a Signal Offset

A very simple method to remove the trend in a signal is to know the trend a priori and to subtract this value.
If the application allows for a so-calledpre-measurement, it is rather simple to obtain an estimate for the
mean of the signal (with or without the desired signal component). Assuming that we have this measure,
we can obtain a simple trend estimate by just using the a priori knowledge:

xtrend,simple(n) = xa prioi. (1.1)

The trend compensated signal can be obtained by subtractingthe estimated trend from the measured signal:

xcomp,simple(n) = x(n) − xtrend,simple(n). (1.2)

To obtain a good estimate forxa prioi we have averaged the two input signals that are depicted in Fig.1.1for
the entire length of both signals individually. The resulting values are then used as a priori knowledge and
are subtracted from the input signals according to Eq. (1.2). Fig.1.2shows the resulting detrended signals
(in the upper diagrams) as well as the estimated trends (red color) and the input signals (blue color) in the
lower diagrams. Please note that only the first 10 seconds of the signals are depicted. The second signal
gets a much smaller offset during the period of 10 to 30 seconds (compared to the first 10 seconds), leading
to the depicted average that looks a bit too small at first glance.

3 Removal of Signal Trends by Highpass Filtering

A second method for trend removal is to estimate the mean of the signal by means of averaging the signal
over the lastNhp samples:

xtrend,hp(n) =
1

Nhp

Nhp−1
∑

i=0

x(n− i). (1.3)
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Figure 1.2: Input signals, estimated trends, and trend compensated signals using the method of constant
subtraction.

The estimated mean valuextrend,hp(n) is subtracted from the input signal

xcomp,hp(n) = x(n)− xtrend,hp(n), (1.4)

Remark:

The approach presented here uses

only causal memory. If file-based

processing is performed, the filter

operation of Eq. (1.3) could also start

at i = −Nhp/2 − 1 and end at

i = Nhp/2.

resulting in the desired trend removal. While Eq. (1.3) describes a lowpass filter,
the subtraction in Eq. (1.4) results in a highpass filter, which gives this section also
its name. Both filters are related (in the frequency domain) as:

Hhp
(

e−jΩ
)

= 1−Hlp
(

e−jΩ
)

. (1.5)

The frequency response of the lowpass filter can be obtained by first having a closer
look on Eq. (1.3) in the time domain. The equation can be interpreted as a convolu-
tion of the input signal with the lowpass impulse responsehlp,n:

xtrend,hp(n) =

∞
∑

i=∞

hlp,i x(n− i). (1.6)
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Removal of Signal Trends by Highpass Filtering

Comparing Eqs. (1.3) and (1.6) leads to the FIR (finite impulse response, [1, 3, 4]) system

hlp,i =







1

Nhp
, if 0 ≤ i < Nhp,

0, else.
(1.7)

Taking also the subtraction of Eq. (1.4), which actually detrends the signal, into account leads tothe impulse
response of the high pass filter (again an FIR filter):

hhp,i =























1−
1

Nhp
, if i = 0,

−
1

Nhp
, if 1 ≤ i < Nhp,

0, else.

(1.8)

In Fig.1.3 the magnitude responses of resulting lowpass (left side) and highpass filter (right side) are de-
picted. For a sample rate offs = 1000Hz a filter orderNhp = 2000 was chosen, leading to an average
based on the last two seconds of the signal.
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Figure 1.3: Magnitude responses of the lowpass and highpassfilter for a filter order ofNhp = 2000 and a
sample rate offs = 1000Hz.

The computation of the lowpass part of the trend removal is rather costly, since usually a few hundred or
even thousand (as in our example) signals have to be added. Ofcourse, one can speed up the process by
performing the entire operation in the spectral domain using fast Fourier transforms. However, this would
introduce delay due to the necessary framing. Another way that is able to save an even larger amount of
complexity is to exploit the special choice of the filter coefficients (they are all the same) and transform
the FIR filter into an IIR structure. This can be achieved by recursively computing the estimated trend
according to

xtrend,hp(n) = xtrend,hp(n− 1) +
1

Nhp

[

x(n) − x(n−Nhp)
]

. (1.9)

This requires only two additions and one multiplication persample. Please note that the division byNhp

can be computed during initialization and the inverse valuecan be stored. This transforms the division into
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A Non-linear and Time-variant Approach

a multiplication (at least for the main operation of the filter). In terms of memory nothing has changed with
this trick – still Nhp samples have to be stored in a so-calledringbuffer.

Transforming specific FIR filter structures into equivalentIIR counterparts is not new. However, only a few
authors mention the numerical problems that appear with this kind of processing.

When computing Eq. (1.9) on a processor with floating point precision, the mantissaeof all terms that
should be added are shifted until the exponents are all the same. When a sample is entering the memory this
shifting operation is not necessarily the same as during theleaving event. As a consequence biased error
accumulation appears. If the signal is rather short this is not really an issue. However, if a few thousand
samples have to be processed this might lead to numerical problems.

A solution to this problem is rather simple. The recursive processing should be updated from time to time
by an iteratively computed estimation. This could be achieved with a small extension to Eq. (1.9):

xtrend,hp(n) =











xtrend,reset(n)

Nhp
, if mod (n,Nhp) ≡ Nhp − 1,

xtrend,hp(n− 1) + 1
Nhp

[

x(n)− x(n−Nhp)
]

, else.

(1.10)

The so-calledreset valuecan be computed according to

xtrend,reset(n) =

{

x(n), if mod (n,Nhp) ≡ 0,

xtrend,reset(n− 1) + x(n), else.
(1.11)

To show the results of this second method, the simulation of Fig.1.2 has been repeated, but now with the
highpass method. Fig.1.4 shows in the upper diagrams the detrended results as well as the input signals
(blue color) and the estimated trends (red color) in the lower diagrams.

4 A Non-linear and Time-variant Approach

As a last method we would like to introduce a non-linear, time-variant method. The method is nearly as
simple as the highpass filter, but is usually a bit better, especially if the short-term mean of the signal is not
zero. In addition a significant reduction of the required memory (compared to the highpass filter approach)
is possible.

As a first step we define the global memory of the signal asNglobal samples. In the following we will base
our analyses on input signals up to that delay. Please note that it is not required to store the input signal for
that amount of samples. As a second step we split the global memory into frames and define the framesize
Nframe for our method. For the MCG example we could use about 1 secondof global memory and a frame
duration of about 100 ms. Since the data was sampled atfs = 1 kHz, we get

Nglobal = 1000, (1.12)

Nframe = 100. (1.13)

Furthermore, we assume thatNglobal is an integer multiple ofNframe

Nglobal = KframeNframe, (1.14)
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Figure 1.4: Input signals, estimated trends, and trend compensated signals using highpass filtering.

which is true in the example above (Kframe = 10). As a next step we compute in an iterative manner the
mean for each frame according to

xcurr. mean(n) =







x(n)
Nframe

, if mod
(

n,Nframe
)

≡ 0,

xcurr. mean(n− 1) + x(n)
Nframe

, else.
(1.15)

Please note thatxcurr. mean(n) only results in the correct mean if the condition

n = λNframe− 1, (1.16)

is true (withλ ∈ Z). To save computational complexity the division byNframe can also be avoided for the
sample-by-sample iteration – it should be performed only when the frame is completelyfilled. Beside the
simple update according to Eq. (1.15) only one first-order recursive smoothing process and the subtraction
of the estimated trend according to

xcomp,nl(n) = x(n)− xtrend,nl(n) (1.17)

are computed at the high sample rate. All other computationsare computed only once perNframe samples.
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A Non-linear and Time-variant Approach

It will lead to a trend estimatẽxtrend,nl(n) that is available only if

mod
(

n,Nframe
)

≡ Nframe− 1, (1.18)

which is an equivalent condition to Eq. (1.16). If we would use the (subsamples) estimated trend directly
in Eq. (1.17), sudden signaljumpsmight appear. For that reason, first order IIR smoothing is performed to
avoid such artifacts:

xtrend,nl(n) = βsmxtrend,nl(n− 1) + (1 − βsm) x̃trend,nl

(⌊ n

Nframe

⌋)

. (1.19)

The symbols⌊...⌋ should indicate rounding down. The smoothing parameterβsm is chosen from the interval

0 ≪ βsm < 1. (1.20)

Typically βsm is chosen out of the range[0.9, 0.9999] – depending on the sample ratefs and on the frame
sizeNframe. If a frame is completely filled (according to condition (1.18) the short-term mean is added to a
vector that contains the lastKframe short-term means

xmean(n) =































[

xcurr. mean
(

n
)

, xcurr. mean
(

n−Nframe
)

, ..., xcurr. mean
(

n− (Kframe− 1)Nframe
)

]T
,

if mod(n,Nframe) ≡ Nframe− 1,

xmean(n− 1),

else.

(1.21)

This method allows to store the supporting points of the averaged signal in a subsampled manner, meaning
that onlyKframe data words (in our example 10) are required to store information ofNglobal samples (in our
example 1000). The basic idea to estimate the trend is now to sort the entries of the vectorxmean(n) and
to utilize, e.g., the median of the stored short-term means.Beside the median also other quantiles could be
utilized. However, the median usually should be the first choice. The vector containing the sorted mean
values is denoted by

xmean, sorted(n) =
[

xmean, sorted, 0(n), xmean, sorted, 1(n), ..., xmean, sorted,Kframe − 1(n)
]T
. (1.22)

The reason for using a sorting operation here (and not a second averaging stage) is that this allows also for
a good trend estimation even if the signal might have a positive or negative bias (as it is the case in the first
MCG example signal). Of course the literature is full of efficient sorting algorithms. However, since we
can assume that we already have a sorted list available before a new short-term mean is computed we can
use a two-stage procedure that updates the sorted list:

• As a first stage we copy the old sorted vector and the new short-term mean into an extended sorted
vector. This operation can be performed withKframe+ 1 operations.

• In a second stage we copy the extended vector back into the original. Beside this copying operation
we check if the element to be copied is equal to the short-termmean that leaves the vectorxmean(n).
This element is then not copied resulting in a shortening of the extended vector. For this second part
againKframe+ 1 operations are required.
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Figure 1.5: Sorting of the frame means.

As a consequence the entire sorting procedure (which is actually only an update of an already sorted list)
required only about2Kframe operations. Fig.1.5shows an overview about the two-stage sorting procedure.

EveryNframe sample the (non-smoothed) trend estimate is updated according to

x̃trend,nl(n) =

{

xmean, sorted,Kframe/2
(n), if mod(n,Nframe) ≡ Nframe− 1,

x̃trend,nl(n− 1), else.
(1.23)

As in the last sections we perform the detrending operation with the two MCG input signals and show the
estimated trends together with the input signals as well as the detrended signals in Fig.1.6.

5 Comparison of the Three Methods

In comparison to the other two methods, the first one is the simplest one. As one can see in Fig.1.7 the
method removes the trend (at least partly), but the resulting signal is not really on the desired zero line.
However, the required computing time is really low since only a fixed constant is subtracted. Also nearly
no memory (one data word for the mean) is required. The methodusing the highpass approach gives a
quite good result but needs the largest memory. In addition,the highpass method requires a little bit more
computing time, but still only a few operations are requiredper sample if computed in recursive manner.
The non-linear method fits nearly exactly to the zero line. Furthermore, much less memory is required
(compared to the highpass method). As conclusion one can saythat the non-linear method is the best for
removing offsets – at least for the examples that we tested here.
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Figure 1.6: Input signals, estimated trends, and trend compensated signals using the non-linear and time-
variant approach.

7 Code Examples

Remark:

The following code example can be

downloaded via the REDwebsite.

%**************************************************************************
% Clear and close everything

%**************************************************************************
clc;

clear all;

close all;

%**************************************************************************
% Load input data

%**************************************************************************
[sig, f_s] = audioread('mcg_01.wav');

%**************************************************************************
% Detrending − Method 1: Subtraction of constant (mean)

%**************************************************************************
sig_detr_const = sig − mean(sig);

%**************************************************************************
% Detrending − Method 2: Highpass

11
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Figure 1.7: Comparison of the three methods.

%**************************************************************************

% Parameters **************************************************************
N_hp = 2*f_s;

% Initializations *********************************************************
mean_start = mean(sig);

sig_detr_hp = zeros(size(sig));

est_mean_sig_hp = zeros(size(sig));

sig_mem = zeros(N_hp,1) + mean_start;

ptr_sig = 0;

mean_rec = mean_start;

mean_iter = 0;

k_iter = 0;

N_hp_inv = 1 / N_hp;

%**************************************************************************
% Main loop

%**************************************************************************
for k = 1:length(sig)

%**********************************************************************
% Get new input signal

%**********************************************************************
sig_entering = sig(k);

%**********************************************************************
% Update ring buffer

%**********************************************************************
% Update of the pointer (modulo N_hp) *********************************
ptr_sig = ptr_sig + 1;

if (ptr_sig > N_hp)

ptr_sig = 1;

end

% Store leaving signal in variable ************************************
sig_leaving = sig_mem(ptr_sig);

% Add new input to signal memory **************************************
sig_mem(ptr_sig) = sig_entering;
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%**********************************************************************
% Update mean recursively

%**********************************************************************
mean_rec = mean_rec + (sig_entering − sig_leaving) * N_hp_inv;

%**********************************************************************
% Iteratively computed mean and correction of rec. mean

%**********************************************************************
k_iter = k_iter + 1;

mean_iter = mean_iter + sig_entering;

if (k_iter == N_hp)

mean_rec = mean_iter * N_hp_inv;

mean_iter = 0;

k_iter = 0;

end

%**********************************************************************
% Store estimated mean (for analysis purposes)

%**********************************************************************
est_mean_sig_hp(k) = mean_rec;

%**********************************************************************
% Output = input − mean

%**********************************************************************
sig_detr_hp(k) = sig_entering − mean_rec;

end

%**************************************************************************
% Detrending − Method 3: New method (no name found yet)

%**************************************************************************

% Parameters **************************************************************
Cell_dur = round(0.1 * f_s); % Cell duration

N_mem_des = round(1.0 * f_s); % Total memory duration

N_cells = round(N_mem_des/Cell_dur); % Number of cells

mean_start = mean(sig);

beta_sm = 0.98;

% Initializations *********************************************************
detr_counter = 0;

Cell_dur_inv = 1 / Cell_dur;

mean_curr_cell = 0;

vec_cell_means = zeros(N_cells,1) + mean_start;

vec_cell_means_sorted = zeros(N_cells,1) + mean_start;

vec_cell_means_sorted_ext = zeros(N_cells+1,1) + mean_start;

pointer_vec_cell_means = 0;

global_mean_est = mean_start;

sig_detr_new = zeros(size(sig));

est_mean_sig_new = zeros(size(sig));

global_mean_est_sm = mean_start;

%**************************************************************************
% Main loop

%**************************************************************************
for k = 1:length(sig)

%**********************************************************************
% Get new input signal

%**********************************************************************
sig_entering = sig(k);
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%**********************************************************************
% Increment main counter

%**********************************************************************
detr_counter = detr_counter + 1;

if (detr_counter > Cell_dur − 1)

% Reset counter ***************************************************
detr_counter = 0;

% Use current sample **********************************************
mean_curr_cell = mean_curr_cell + sig(k);

% Finalize estimation of mean of current cell *********************
mean_curr_cell = mean_curr_cell * Cell_dur_inv;

% Update vector containing cell means *****************************
pointer_vec_cell_means = pointer_vec_cell_means + 1;

if (pointer_vec_cell_means > N_cells)

pointer_vec_cell_means = 1;

end

vec_cell_means_leaving = vec_cell_means(pointer_vec_cell_means);

vec_cell_means(pointer_vec_cell_means) = mean_curr_cell;

% Insert new mean into sorted list ********************************
index_offset = 0;

for k_sort = 1:N_cells

if ( (mean_curr_cell > vec_cell_means_sorted(k_sort)) && ...

(index_offset == 0) )

index_offset = 1;

vec_cell_means_sorted_ext(k_sort) = mean_curr_cell;

end

vec_cell_means_sorted_ext(k_sort+index_offset) = vec_cell_means_sorted(k_sort);

end

if (index_offset == 0)

vec_cell_means_sorted_ext(N_cells+1) = mean_curr_cell;

end

% Remove leaving mean from sorted list ****************************
index_offset = 0;

for k_sort = 1:N_cells

if ( (vec_cell_means_leaving == vec_cell_means_sorted_ext(k_sort)) && ...

(index_offset == 0) )

index_offset = 1;

end

vec_cell_means_sorted(k_sort) = vec_cell_means_sorted_ext(k_sort+index_offset);

end

% Update mean by taking from the middle of the sorted list ********
global_mean_est = vec_cell_means_sorted(round(N_cells/2));

% Reset current mean estimation ***********************************

14
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mean_curr_cell = 0;

else

% Update estimation of mean of current cell ***********************
mean_curr_cell = mean_curr_cell + sig_entering;

end

%**********************************************************************
% Smoothing of the estimated mean

%**********************************************************************
global_mean_est_sm = beta_sm * global_mean_est_sm + ...

(1 − beta_sm) * global_mean_est;

est_mean_sig_new(k) = global_mean_est_sm;

%**********************************************************************
% Detrend input signal

%**********************************************************************
sig_detr_new(k) = sig_entering − global_mean_est;

end

%**************************************************************************
% Analyses

%**************************************************************************
t_h = (0*f_s+1:30*f_s−1);

t = (t_h−1)/f_s;

lw = 1.5;

% Time−domain analyses ***************************************************
fig = figure;

set(fig,'Units','Normalized');

set(fig,'Position',[0.1 0.1 0.8 0.8]);

sb_td_detr(1) = subplot('Position',[0.08 0.68 0.84 0.28]);

plot(t,sig_detr_const(t_h),'b','LineWidth',lw);

grid on;

set(gca,'XTickLabel','');

legend('Detrended signal (const subtraction)');

sb_td_detr(2) = subplot('Position',[0.08 0.38 0.84 0.28]);

plot(t,sig_detr_hp(t_h),'b','LineWidth',lw);

grid on;

set(gca,'XTickLabel','');

legend('Detrended signal (highpass)');

sb_td_detr(3) = subplot('Position',[0.08 0.08 0.84 0.28]);

plot(t,sig_detr_new(t_h),'b','LineWidth',lw);

grid on;

xlabel('Time in seconds');

legend('Detrended signal (new method)');

linkaxes(sb_td_detr,'xy');

% Time−domain analyses ***************************************************
fig = figure;

set(fig,'Units','Normalized');

set(fig,'Position',[0.1 0.1 0.8 0.8]);

sb_td_detr(1) = subplot('Position',[0.08 0.68 0.84 0.28]);

plot(t,sig(t_h),'b', ...

t,sig(t_h)*0+mean(sig),'r','LineWidth',lw);

grid on;

set(gca,'XTickLabel','');
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legend('Input signal','Estimated mean (const subtraction)');

sb_td_detr(2) = subplot('Position',[0.08 0.38 0.84 0.28]);

plot(t,sig(t_h),'b', ...

t,est_mean_sig_hp(t_h),'r','LineWidth',lw);

grid on;

set(gca,'XTickLabel','');

legend('Input signal ','Estimated mean (highpass)');

sb_td_detr(3) = subplot('Position',[0.08 0.08 0.84 0.28]);

plot(t,sig(t_h),'b', ...

t,est_mean_sig_new(t_h),'r','LineWidth',lw);

grid on;

xlabel('Time in seconds');

legend('Input signal ','Estimated mean (new method)');

linkaxes(sb_td_detr,'xy');
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