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•

Neural Networks

Motivation and Literature

Neural networks:

❑ Neural networks are a very popular machine learning 
technique.

❑ They simulate the mechanisms of learning in biological
systems such as the human brain.

❑ The human brain / the nervous system contains cells 
which are called neurons. The neurons are connected
using axons and dendrites. While learning the 
connections between neurons are changed.

❑ Within this lecture we will talk about artificial neural 
networks that mimic the processes in the human
brain. The adjective “artificial” will be omitted for 
reasons of brevity. 
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•

Neural Networks

Motivation and Literature

Deep learning:

❑ The advantage of neuronal structures is their ability to be
adapted to several types of problems by changing their
size and internal structure.

❑ A few years ago so-called deep approaches appeared. This
was one of the main factors for the success of neural
networks.

❑ “Deep” means here to have on the one hand several/many
hidden layers. On the other hand it means that specific
training procedures are used.

❑ Compared to conventional (shallow) structures deep 
approaches are specially suited if a large amount of 
training data is available.

Available data size

Accuracy

Deep learning

Conventional
approaches
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•

Neural Networks

Motivation and Literature

Literature:

❑ C. C. Aggarwal: Neural Networks and Deep Learning, Springer, 2018

❑ A. Géron: Machine Learning mit Scikit-Learn & Tensorflow, O’Reilly, 2018 (in German and English)

❑ I. Goodfellow, Y. Bengio, A. Courville: Deep Learning, MITP, 2018 (in German and English)
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Neural Networks

Structure of a Neural Network – Basics 

Basic structure during runtime and training:

Neural
network

Distance or
error 

computation

Training
algorithm

Runtime

Training

Database with
input features

Database with
input and output 

features
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•

Neural Networks

Structure of a Neural Network – Basics 

Network structure(s):

Multilayer perceptron AutoencoderConvolutional neural network Recurrent neural network

LSTM network “U-Net” Attention-based network Generative adversarial network
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•

Neural Networks

Structure of a Neural Network – Basics 

Network structure(s):

Multilayer perceptron AutoencoderConvolutional neural network Recurrent neural network

LSTM network “Unet” Attention-based network Generative adversarial network
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Neural Networks

Structure of a Neural Network – Basics 

Network structure:

Neural
network

Distance
comp.

Training
algorithm

Database with
input features

Database with
input and output features

Input
layer

Hidden
layer

Output
layer

Hidden
layer
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Neural Networks

Structure of a Neural Network – Basics 

Input layer:
Neural 

network

Input
layer

Input layer

Output
layer

Hidden
layer

Hidden
layer

❑ Sometimes only a “pass through” layer

❑ Sometimes also a mean compensation and 
a normalization is performed:

Afterwards all individually normalized inputs
are combined to a vector:
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Neural Networks

Structure of a Neural Network – Basics 

Hidden layer:
Neural 

network

Input
layer

Hidden layer

Output
layer

Hidden
layer

Hidden
layer

Slide 13

❑ Linear weighting of inputs with bias

with 

❑ Nonlinear activation function:

❑ Combination of all results to a vector:
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Neural Networks

Structure of a Neural Network – Basics

Activation functions – part 1:

❑ The sum of the weighted inputs plus the bias
will be abbreviated with 

❑ Several activation functions exist, such as

❑ the identity function

❑ the sign function, or

❑ the sigmoid function

Identity function

Differentiation

Sign function

Differentiation

Sigmoid function

Differentiation
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•

Neural Networks

Structure of a Neural Network – Basics

Activation functions – part 2:

❑ Further activation functions:

❑ the tanh function

❑ the rectified linear function (or unit, ReLU)

❑ the “hard tanh“ function

Tanh function

Differentiation Differentiation

“Hard tanh” function

Differentiation

Rectified linear function
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Neural Networks

Structure of a Neural Network – Basics 

Output layer:
Neural 

network

Input
layer

Output layer

Output
layer

Hidden
layer

Hidden
layer

❑ Sometimes only a “pass through” layer

❑ Sometimes also a limitation

and a normalization is performed:

The limited and normalized outputs are combined to a vector 

Minimum

Maximum

Normali-
zation
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Neural Networks

Structure of a Neural Network – Basics

Layer sizes:

❑ The input and the output layer size is usually given by the 
application. The input layer size is equal to the feature 
vector size and the output layer size is determined by the
amount of output features.

Sometimes more outputs than required are computed in
order to modify the cost function.

❑ The entire size of the network (sum of all layer sizes) should
be adjusted to the size of the available data.

❑ In some applications so-called bottle neck layers are helpful.

Input
layer

Output
layer

Hidden layers

Input
layer

Output
layer

Hidden layers
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Neural Networks

Applications of Neural Networks – Sources 

Tesla:

❑ https://cleantechnica.com/2018/06/11/tesla-director-of-ai-discusses-programming-a-neural-net-for-autopilot-video/

❑ https://vimeo.com/272696002?cjevent=c27333cefa3511e883d900650a18050f 

Pixel Recursive Super Resolution:

❑ R. Dahl, M. Norouzi and J. Shlens: Pixel Recursive Super Resolution, 2017 IEEE International Conference on 
Computer Vision (ICCV), Venice, pp. 5449-5458, 2017.

Image colorization:

❑ http://iizuka.cs.tsukuba.ac.jp/projects/colorization/data/colorization_sig2016.pdf
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Neural Networks

Applications of Neural Networks – Real-time Video Object Recognition

❑ Tesla uses cameras, radar and ultrasonic sensors to detect objects in the surrounding area. However, they rely mostly on
computer vision by cameras.

❑ Their current system uses (mostly) a so-called convolutional network (details later on) for object recognition. New 
approaches use “CodeGen” (also the structure [not only the weights] of the network are adapted during the training).

❑ The main system for autonomous driving is a deep neural network.

The following video is a full self driving demo by Tesla, where this legend is used:

Video object recognition for Tesla cars:
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Neural Networks

Applications of Neural Networks – Real-time Video Object Recognition
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Neural Networks

Applications of Neural Networks – Improving Image Resolution

“Super resolution is the problem of artificially enlarging a low resolution photograph to recover a plausible high 
resolution. […]”

Neural network types used:

❑ New probabilistic deep network architectures are used that are
based on log-likelihood objectives.

❑ Extension of “PixelCNNs” (conv. net.) and “ResNet” (residual net.)

❑ Basically two networks are used: 

❑ A “prior network” that captures serial dependencies of pixels 
(auto-regressive part of model) [PixelCNN] and 

❑ a “conditioning network” that captures the global structure 
of images (DCNN, similar to “SRResNet”, feed-forward convolutional neural networks).

Problems:

❑ As magnification increases the neural network needs to predict missing information such as:

❑ complex variations of objects, viewpoints, illumination, …

❑ Underspecified problem →many plausible high resolution images

NN input NN output
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Neural Networks

Applications of Neural Networks – Automatic Image Colorization with Simultaneous Classification

❑ A convolutional network using low-
level features to compute global  
features for classifying the image 
(rough type of image, what are the 
surroundings).

❑ A parallel network uses the same 
low-level features to compute
mid-level features.

❑ Fusion of global features (e.g. indoor 
or outdoor photo) and mid-level 
features are used for colorization 
of the image.

❑ Greyscale image is then used for 
luminance.

Coloration of greyscale images:
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Neural Networks

Applications of Neural Networks – Automatic Image Colorization with Simultaneous Classification

Typical failure cases:Other examples:
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Neural Networks

Types of Neural Networks

Network structure(s):

Multilayer perceptron AutoencoderConvolutional neural network Recurrent neural network

LSTM network “Unet” Attention-based network Generative adversarial network
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Neural Networks

Types of Neural Networks

Convolutional neural networks (CNNs):

❑ CNNs were part of the early times in
deep approaches. 

❑ They are often applied in image and
video applications.

❑ Often three-dimensional layers with 
special ReLU activation functions
followed by pooling (next slides) are
used.

❑ The weights of the layers are used
as in a “conventional” convolution,
meaning that the same weights are
used very often (e.g. for edge detection).

Input
(e.g. picture)

Source: Adopted from Charu C Aggarwal, Neural Networks and Deep Learning, Springer, 2018
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Neural Networks

Types of Neural Networks

Convolutional neural networks (CNNs):

❑ Convolutional layers

❑ Computing a weighted 
sum of a subset of the       
input data and applying
an activation function 
to the weighted sum.
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Neural Networks

Types of Neural Networks

Convolutional neural networks (CNNs):

❑ Convolutional layers

❑ Computing a weighted 
sum of a subset of the       
input data and applying
an activation function 
to the weighted sum.

❑ Shift the weighting filter 
(kernel) with the same
coefficients but now to
different input data.
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•

Neural Networks

Types of Neural Networks

Convolutional neural networks (CNNs):

❑ Convolutional layers

❑ Computing a weighted 
sum of a subset of the       
input data and applying
an activation function 
to the weighted sum.

❑ Shift the weighting filter 
(kernel) with the same
coefficients but now to
different input data.

❑ Do this over the entire 
range of the input data.
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Neural Networks

Types of Neural Networks

Convolutional neural networks (CNNs):

❑ Parameters of CNNs

❑ Stride (x = 1, y = 1)
❑ Padding  (x = 0, y = 0)
❑ Dilation (x =0, y = 0) 

Stride in x 
direction

Stride in y 
direction
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Neural Networks

Types of Neural Networks

Convolutional neural networks (CNNs):

❑ Parameters of CNNs

❑ Stride (x = 2, y = 1)
❑ Padding  (x = 0, y = 0)
❑ Dilation (x =0, y = 0) 

Stride in y 
direction

Stride in x 
direction

Result is compressed 
in x direction
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•

Neural Networks

Types of Neural Networks

Convolutional neural networks (CNNs):

❑ Parameters of CNNs

❑ Stride (x = 1, y = 1)
❑ Padding (x = 0, y = 0)
❑ Dilation (x =0, y = 0) 

No padding
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•

Neural Networks

Types of Neural Networks

Convolutional neural networks (CNNs):

❑ Parameters of CNNs

❑ Stride (x = 1, y = 1)
❑ Padding (x = 1, y = 1)
❑ Dilation (x =0, y = 0) 

Padding (filled with zeros) 
of one element

Padding allows to keep 
the original data size!
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•

Neural Networks

Types of Neural Networks

Convolutional neural networks (CNNs):

❑ Parameters of CNNs

❑ Stride (x = 1, y = 1)
❑ Padding  (x = 0, y = 0)
❑ Dilation (x =0, y = 0) 

No dilation
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Neural Networks

Types of Neural Networks

Convolutional neural networks (CNNs):

❑ Parameters of CNNs

❑ Stride (x = 1, y = 1)
❑ Padding  (x = 0, y = 0)
❑ Dilation (x =1, y = 1) 

Dilation is some sort of subsampling 
within the kernels
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Neural Networks

Types of Neural Networks

Convolutional neural networks (CNNs):

❑ Kernels of CNNs

❑ First kernel 

A multitude of kernels leads to an extra 
dimension for the intermediate data 

structures (see next slide)
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Neural Networks

Types of Neural Networks

Convolutional neural networks (CNNs):

❑ Kernels of CNNs

❑ First kernel
❑ Second kernel 

A multitude of kernels leads to an extra 
dimension for the intermediate data 

structures (see next slide)
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Neural Networks

Types of Neural Networks

Convolutional neural networks (CNNs):

❑ Kernels of CNNs

❑ First kernel
❑ Second kernel
❑ Usually “3D processing” 

https://animatedai.github.io/
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Neural Networks

Types of Neural Networks

Convolutional neural networks (CNNs):

❑ Pooling can be realized e.g. by computing the
maximum over an overlapping and moving
part of the input: 

❑ The basic idea behind pooling is that it is important that a specific pattern is found in a certain area,
but it’s not important where exactly.

❑ Pooling is often combined with subsampling of the output structures (striding). 
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Neural Networks

Types of Neural Networks

Convolutional neural networks (CNNs):

❑ At the end of the network structure the 3D data structures are rearranged into a single vector and a “conventional” 
network is used for generating the final output.

Input
(e.g. picture)
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Neural Networks

Types of Neural Networks

Network structure(s):

Multilayer perceptron AutoencoderConvolutional neural network Recurrent neural network

LSTM network “U-net” Attention-based network Generative adversarial network
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Neural Networks

Types of Neural Networks

Autoencoder networks:

❑ Instead of mapping 
input vectors on 
features, it is 
tried to reconstruct
the input at the
output.

❑ In the middle of the 
network a 
bottleneck layer 
is used.

❑ This could be used
for data compression 
(in some sense similar 
to a codebook) 
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Neural Networks

Types of Neural Networks

Autoencoder networks:

❑ The first part of the
network is called
(auto-) encoder.

❑ The second part is 
called (auto-) 
decoder.

❑ Can be seen as a 
nonlinear 
extension of a 
PCA-based data
compression.

Encoder Decoder
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Neural Networks

Types of Neural Networks

Autoencoder networks:

❑ Application 
example: under-
water speech
transmission

❑ The spectral 
envelope of 
short speech
frames is coded
and transmitted
(digital part).

❑ The residual signal
is transmitted in
an analog 
manner.

Encoder Decoder

Trans-
mitter

Channel

Receiver
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Neural Networks

Types of Neural Networks

Autoencoder networks:

❑ Application 
example: under-
water speech
transmission

❑ The spectral 
envelope of 
short speech
frames is coded
and transmitted
(digital part).

❑ The residual signal
is transmitted in
an analog 
manner.

Encoder Decoder

Trans-
mitter

Channel

Receiver



Digital Signal Processing and System Theory | Pattern Recognition | Neural Networks Slide 47

•

Neural Networks

Types of Neural Networks

Autoencoder networks:

❑ “Conventional” 
(linear) data
compression 
by means of PCA
(principle compo-
nent analysis).

❑ Eigenvectors and
-values of the     
autocorrelation
matrix are 
computed.

❑ Transmission of
the compressed
feature vectors.

Encoder Decoder

Feature vector
with high 
dimension

Compressed 
feature vector

with low dimension

Compressed 
feature vector
with low dimension

Reconstructed feature 
vector with high 

dimension

Matrix with some eigenvectors 
that belong to the larges 

eigenvalues
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Neural Networks

Types of Neural Networks

Autoencoder networks:

❑ “Conventional” 
(linear) data
compression 
by means of PCA
(principle compo-
nent analysis).

❑ Eigenvectors and
-values of the     
autocorrelation
matrix are 
computed.

❑ Transmission of
the compressed
feature vectors.

Encoder Decoder

Feature vector
with high 
dimension

Compressed 
feature vector

with low dimension

Compressed 
feature vector
with low dimension

Reconstructed feature 
vector with high 

dimension

Matrix with some eigenvectors 
that belong to the larges 

eigenvalues

Feature 1

Feature 2

Data cloud
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Neural Networks

Types of Neural Networks

Autoencoder networks:

❑ “Conventional” 
(linear) data
compression 
by means of PCA
(principle compo-
nent analysis).

❑ Eigenvectors and
-values of the     
autocorrelation
matrix are 
computed.

❑ Transmission of
the compressed
feature vectors.

Encoder Decoder

Feature vector
with high 
dimension

Compressed 
feature vector

with low dimension

Compressed 
feature vector
with low dimension

Reconstructed feature 
vector with high 

dimension

Matrix with some eigenvectors 
that belong to the larges 

eigenvalues

Feature 1

Feature 2

Data cloud

Eigenvectors of correlation matrix
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Neural Networks

Types of Neural Networks

Autoencoder networks:

❑ “Conventional” 
(linear) data
compression 
by means of PCA
(principle compo-
nent analysis).

❑ Eigenvectors and
-values of the     
autocorrelation
matrix are 
computed.

❑ Transmission of
the compressed
feature vectors.

Encoder Decoder

Feature vector
with high 
dimension

Compressed 
feature vector

with low dimension

Compressed 
feature vector
with low dimension

Reconstructed feature 
vector with high 

dimension

Matrix with some eigenvectors 
that belong to the larges 

eigenvalues

Feature 1

Feature 2

Data cloud

Projection on eigenvector 
belonging to largest

eigenvalue

Compressed dimension 1
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Neural Networks

Types of Neural Networks

Autoencoder networks:

❑ “Conventional” 
(linear) data
compression 
by means of PCA
(principle compo-
nent analysis).

❑ Eigenvectors and
-values of the     
autocorrelation
matrix are 
computed.

❑ Transmission of
the compressed
feature vectors.

Encoder Decoder

Feature vector
with high 
dimension

Compressed 
feature vector

with low dimension

Compressed 
feature vector
with low dimension

Reconstructed feature 
vector with high 

dimension

Matrix with some eigenvectors 
that belong to the larges 

eigenvalues

Feature 1

Feature 2

Data cloud

Compressed dimension 1

Just a different 
visualization …
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Neural Networks

Types of Neural Networks

Autoencoder networks:

❑ “Conventional” 
(linear) data
compression 
by means of PCA
(principle compo-
nent analysis).

❑ Eigenvectors and
-values of the     
autocorrelation
matrix are 
computed.

❑ Transmission of
the compressed
feature vectors.

Encoder Decoder

Feature vector
with high 
dimension

Compressed 
feature vector

with low dimension

Compressed 
feature vector
with low dimension

Reconstructed feature 
vector with high 

dimension

Matrix with some eigenvectors 
that belong to the larges 

eigenvalues

Feature 1

Feature 2

Data cloud

Compressed dimension 1

Inverse 
compression

(with information loss)

Feature 1

Feature 2
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Neural Networks

Types of Neural Networks

Variational autoencoder networks:

❑ In the basic setup
overfitting and
undesired 
behavior for 
“unseen” data
occurs. 

❑ This can be 
improved by 
modelling also 
the distribution
of the latent 
variables (as a 
GMM).

Encoder Decoder
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Neural Networks

Types of Neural Networks

Variational autoencoder networks:

❑ Now the GMM
parameters are
estimated by the 
encoder. 

❑ Afterwards 
resampling is 
applied to vary 
the data and 
increase 
robustness to     
outliers.

❑ However, this is 
critical for 
training based on
backpropagation.

Encoder Decoder

Resampling
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Neural Networks

Types of Neural Networks

Variational autoencoder networks:

Encoder Decoder

❑ With a little trick
a random vector
can be created 
that still allows 
pack propagation 
to work.

❑ Using a random
process 
generator     
resampled 
feature 
vectors
are created:
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Neural Networks

Types of Neural Networks

VQ-AE Example (MNIST):

❑ MNIST consists of
handwritten digits

❑ Codes are assigned 
during training

❑ Basis for things like:

https://openai.com/blog/dall-e/
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Neural Networks

Types of Neural Networks

Example (Audio):

❑ Mixed analog/digital 
versus standard 
processing



Digital Signal Processing and System Theory | Pattern Recognition | Neural Networks Slide 58

•

Neural Networks

Types of Neural Networks

Measurement setup:

❑ Parameters:
❑ 50 kHz base frequency
❑ ≈ 500 m distance
❑ ≈ 10-15 m water depth
❑ Single Input, Single Output

❑ Marinearsenal Kiel

❑ Submarine hangar to CASSy

❑ Mixed and traditional transmission

❑ Traditional approach ❑ New approach
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Neural Networks

Types of Neural Networks

Network structure(s):

Multilayer perceptron AutoencoderConvolutional neural network Recurrent neural network

LSTM network “U-net” Attention-based network Generative adversarial network
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Neural Networks

Types of Neural Networks

Recurrent neural networks (RNNs):

❑ Recursive branches are added to the network
to allow for efficient modelling of temporal 
memory. 

❑ Stability (during operation) is not really an issue
(in contrast to IIR filters), since usually the 
activation functions include limitations.

❑ Very often the delay element is not depicted in
literature of RNNs.

Input
layer

Output
layer

(Extended) hidden layer
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Neural Networks

Types of Neural Networks

Recurrent neural networks (RNNs):

❑ Training could be 
done easily if
the network is
unfolded.

❑ Afterwards again
a “standard” 
network with 
extended in- and
outputs as well as
with coefficient
limitations can
be trained. Input

layer

Output
layer

Hidden
layer

Input
layer

Output
layer

Hidden
layer

Input
layer

Output
layer

Hidden
layer

Input
layer

Output
layer

Hidden
layer

Input
layer

Output
layer

Hidden
layer
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Neural Networks

Types of Neural Networks

Network structure(s):

Multilayer perceptron AutoencoderConvolutional neural network Recurrent neural network

LSTM network “U-net” Attention-based network Generative adversarial network
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Neural Networks

Types of Neural Networks

Long-short-time memory networks (LSTMs):

❑ LSTMs are extensions of basic recurrent networks that 
don’t suffer from the vanishing gradient problem.
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Neural Networks

Types of Neural Networks

Long-short-time memory networks (LSTMs):

❑ LSTMs are extensions of basic recurrent networks that 
don’t suffer from the vanishing gradient problem.

❑ LSTMs are extended RNNs with an additional hidden
cell state which serves as memory.

❑ Often used in classifying, processing and making
predictions based on time series data such as 
language translation.

Input
layer

Output
layer

Hidden
layer

Exten-
ded

hidden
layer

Input
layer

Output
layer

Hidden cell state

Basic structure of a cell of a recurrent network

Basic structure of an LSTM cell
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Long-short-time memory networks (LSTMs):

Input
layer

Out-
put

layer

Exten-
ded

hidden
layer

Input gate
(0 … 1)

Forget gate
(0 … 1)

Extended hidden layer

Basic structure of an 
LSTM cell

❑ LSTMs are extensions of basic recurrent networks that 
don’t suffer from the vanishing gradient problem.

❑ LSTMs are extended RNNs with an additional hidden
cell state which serves as memory.

❑ Often used in classifying, processing and making
predictions based on time series data such as 
language translation.

❑ Three gates:

❑ Input gate
❑ Forget gate
❑ Output gate

Output gate
(0 … 1)
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Long-short-time memory networks (LSTMs):

Input gate
(0 … 1)

Forget gate
(0 … 1)

Extended hidden layer

❑ LSTMs are extensions of basic recurrent networks that 
don’t suffer from the vanishing gradient problem.

❑ LSTMs are extended RNNs with an additional hidden
cell state which serves as memory.

❑ Often used in classifying, processing and making
predictions based on time series data such as 
language translation.

❑ Three gates:

❑ Input gate
❑ Forget gate
❑ Output gate

Output gate
(0 … 1)

❑ Example from text processing:

Gerhard is preparing lecture slides. 

Store “male” in a state
Store “plural” in another state
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Long-short-time memory networks (LSTMs):

Input gate
(0 … 1)

Forget gate
(0 … 1)

Extended hidden layer

❑ LSTMs are extensions of basic recurrent networks that 
don’t suffer from the vanishing gradient problem.

❑ LSTMs are extended RNNs with an additional hidden
cell state which serves as memory.

❑ Often used in classifying, processing and making
predictions based on time series data such as 
language translation.

❑ Three gates:

❑ Input gate
❑ Forget gate
❑ Output gate

Output gate
(0 … 1)

❑ Example from text processing:

Gerhard is preparing lecture slides. Jennifer
is checking them.

Forget “male” and store 
“female” in a state
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Long-short-time memory networks (LSTMs):

❑ LSTMs are extensions of basic recurrent networks that 
don’t suffer from the vanishing gradient problem.

❑ LSTMs are extended RNNs with an additional hidden
cell state which serves as memory.

❑ Often used in classifying, processing and making
predictions based on time series data such as 
language translation.

❑ Three gates:

❑ Input gate
❑ Forget gate
❑ Output gate
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Long-short-time memory networks (LSTMs):

❑ LSTMs are extensions of basic recurrent networks that 
don’t suffer from the vanishing gradient problem.

❑ LSTMs are extended RNNs with an additional hidden
cell state which serves as memory.

❑ Often used in classifying, 
processing and making
predictions based on 
time series data such as 
language translation.

❑ Three gates:

❑ Input gate
❑ Forget gate
❑ Output gate

❑ Input gate:

❑ Forgot gate:

❑ Output gate:
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Long-short-time memory networks (LSTMs):

❑ LSTMs are extensions of basic recurrent networks that 
don’t suffer from the vanishing gradient problem.

❑ LSTMs are extended RNNs with an additional hidden
cell state which serves as memory.

❑ Often used in classifying, 
processing and making
predictions based on 
time series data such as 
language translation.

❑ Three gates:

❑ Input gate
❑ Forget gate
❑ Output gate

❑ Input gate:

❑ Forgot gate:

❑ Output gate:

❑ Cell state update:

❑ Hidden state update:
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Network structure(s):

Multilayer perceptron AutoencoderConvolutional neural network Recurrent neural network

LSTM network “U-net” Attention-based network Generative adversarial network
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Attention-based networks:

❑ So-called transformers in combination with attention-based
preprocessing is often used for the translation of texts (input in 
one language, output in another).

❑ “Attention” was invented by Vaswani, Ashish, Shazeer, et al. 
in 2017 (see graphic on the left)

❑ Consists of a encoder and a decoder part.

❑ We will not go into all details of transformers (see hint at the end 
of this slide section), but since attention can be used in several 
other applications, we will go a bit into detail here.
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❑ Simplification to understand the 
basic principle

Attention-based networks:

Encoder

Decoder

Entire sentence 
in language A

Previous word 
in language B

Probability of next 
word in language B

“Transformed” 
sentence in 
language A
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❑ Simplification to understand the 
basic principle

❑ Recurrent principle of the 
decoder

Attention-based networks:

Encoder

Decoder

Entire sentence 
in language A

Previous word 
in language B

Probability of next 
word in language B

“Transformed” 
sentence in 
language A Best match 

selection
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❑ Simplification to understand the 
basic principle

❑ Recurrent principle of the 
decoder

❑ Multiple encoder and 
decoder stages are 
connected.

❑ Input and output vectors
have the same size and 
the same “definition”.

Attention-based networks:

Encoder 1 Decoder 1

Entire sentence 
in language A

Previous word 
in language B

Probability of next 
word in language B

“Transformed” 
sentence in 
language A Best match 

selection

Encoder N

Decoder 2

Decoder M
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❑ The problem with recurrent networks that are 
trained with large “defolding” are vanishing (and/or 
exploiting) gradients.

❑ However, in translation a large context is required.

❑ Example:

❑ Have a look on the context of “it”.
❑ Predict the next word.

Attention-based networks:

Gerhard ordered a new notebook. When it arrived at home, his 
daughter thought it was for her and was very happy. However, it was 
not working as expected and Gerhard had to send it ...
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❑ Basic principle of word embedding

❑ Words are converted
in to a high dimensional
vector space.

❑ Spatial closeness indicates
a (strong) “relationship”.

Attention-based networks:

Gerhard

he man

lazy

tired

inactive

professor

university
teaching

lecture
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❑ Basic principle of weighted 
averaging:

❑ Here spatial / temporal closeness 
is mapped on weights.

❑ The kernel is a Hann window.

❑ Importance or SNR of the input 
samples is not taken into account.

❑ Also, “relationships” among the 
input samples are not exploited.

Attention-based networks:
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❑ Basic principle of transformers (simplified)

❑ Text translation

❑ First input is converted 
and encoded.

Attention-based networks:

Encoder

SOS          Gerhard          bought           a                 car               EOS

Decoder
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❑ Basic principle of transformers (simplified)

❑ Text translation

❑ First input is converted 
and encoded.

❑ Next the decoder starts 
with the start of the sentence (SOS)

Attention-based networks:

Encoder

SOS          Gerhard          bought           a                 car               EOS

Decoder

SOS
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❑ Basic principle of transformers (simplified)

❑ Text translation

❑ First input is converted 
and encoded.

❑ Next the decoder starts 
with the start of the sentence (SOS)

Attention-based networks:

Encoder

SOS          Gerhard          bought           a                 car               EOS

Decoder

Gerhard

Best match 
selection
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❑ Basic principle of transformers (simplified)

❑ Text translation

❑ First input is converted 
and encoded.

❑ Next the decoder starts 
with the start of the sentence (SOS)

❑ Select the best match and compute
the decoder again.

Attention-based networks:

Encoder

SOS          Gerhard          bought           a                 car               EOS

Decoder

kaufte

Best match 
selection
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❑ Basic principle of transformers (simplified)

❑ Text translation

❑ First input is converted 
and encoded.

❑ Next the decoder starts 
with the start of the sentence (SOS)

❑ Select the best match and compute
the decoder again.

❑ And so on …

Attention-based networks:

Encoder

SOS          Gerhard          bought           a                 car               EOS

Decoder

ein

Best match 
selection
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❑ Basic principle of attention

❑ Input words: SOS   Gerhard   is      lazy    but     he    likes   to       be          a     professor       EOF 

❑ Input vectors:

❑ Queries:

❑ Keys:

❑ Preliminary weights:

❑ Final weights:

❑ New embedding:  

Attention-based networks:
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❑ Basic principle of (self) attention heads

❑ Input vectors:

❑ Queries:

❑ Keys:

❑ Values:

❑ Preliminary weights:

❑ Final weights:

❑ New embedding: 

Attention-based networks:

These three matrices 
will be optimized 
during the training.
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❑ Full structure

❑ Beside “self attention” also 
“masked attention” is used in the
decoder.

❑ Each attention block is followed
by an adder and a normalization 
unit (mean subtraction and
division by standard deviation).

❑ Afterwards a simple feed forward
network is computed.

Attention-based networks:
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❑ Very good explanation from Lennart Svensson, 
Chalmers University of Technology, Göteborg, Sweden

❑ YouTube videos

❑ https://www.youtube.com/watch?v=0SmNEp4zTpc
❑ https://www.youtube.com/watch?v=ER_KqqtoikA
❑ (see playlist for further seven videos)

Attention-based networks:

https://www.youtube.com/watch?v=0SmNEp4zTpc
https://www.youtube.com/watch?v=ER_KqqtoikA
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Network structure(s):

Multilayer perceptron AutoencoderConvolutional neural network Recurrent neural network

LSTM network “U-net” Attention-based network Generative adversarial network
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U-net

Motivation:

Input pictures from the 
PhC-U373 data set 

(ISBI cell tracking challenge)

Output pictures 
(yellow = manual labeling, 

colored areas = u-net results)

❑ Originally designed for image segmentation
(in contrast to image classification) for 
medical applications 

❑ Two new ideas:

❑ Data (input and labels) duplication
with modification ([non-linear] 
stretching, rotation, subsampling, …)

❑ New network architecture consisting
of a contraction (encoder) and 
expansion (decoder) path with 
a bottleneck in between
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U-net

Motivation:

Ronneberger, Fischer and Brox, U-Net: Convolutional Neural Networks for Biomdical Image 
Segmentation, In: Medical Image Computing and Computer-Assisted Intervention (MICCAI), LNCS, 
Springer, 2015, vol. 9351, p. 234-241. Available at: https://arxiv.org/abs/1505.04597

❑ Originally designed for image segmentation
(in contrast to image classification) for 
medical applications 

❑ Two new ideas:

❑ Data (input and labels) duplication
with modification ([non-linear] 
stretching, rotation, subsampling, …)

❑ New network architecture consisting
of a contraction (encoder) and 
expansion (decoder) path with 
a bottleneck in between

https://arxiv.org/abs/1505.04597
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U-net

Structure:

❑ The contraction path is about “what is to be 
seen in the image”, and not so much where 
(contextual feature extraction).

❑ It is built of convolution layers (multiple 
layers per green/blue box) and
ReLU activation, followed by a 
pooling layer to reduce the image 
resolution.

❑ The number of feature maps (filters) 
increases with each level, the image 
resolution decreases.

Input

Output (of contraction part)

Contraction part
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U-net

Structure:

❑ The bottleneck is used to compress 
features in a more concise way. Input

Bottel-
neck
partContraction part
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U-net

Structure:

❑ The expansion path is used to localize 
where features appear within the 
image. It creates a high-resolution 
image map.

❑ It uses upconvolution (upsampling) 
to increase the image resolution.

Input

Bottel-
neck
partContraction part

Output

Expansion part
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U-net

Structure:

❑ The expansion path is used to localize 
where features appear within the 
image. It creates a high-resolution 
image map.

❑ It uses “upconvolution” (upsampling) 
to increase the image resolution,

❑ concatenates the feature maps 
with those from the contraction 
path at the same level,

❑ and applies convolution.

Input

Bottel-
neck
partContraction part

Output

Expansion part

Conca-
tenation

part
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❑ Motivation

❑ Structure of a (basic) neural network

❑ Applications of neural networks

❑ Types of neural networks

❑ Basic training of neural networks

❑ Backpropagation

❑ Update rules

❑ Learning rate scheduling

❑ Generative adversarial networks

❑ Reinforcement learning

Contents
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Training of Neural Networks – Basics

❑ In order to be mathematically 
correct, several indices are
necessary:

❑ Time or frame index . 
❑ Layer index .
❑ Parameter index .
❑ Training index .

❑ However, some of the 
indices will be dropped
in the following slides for the 
reason of better readability. 

Preliminary items – part 1:

Layer index Parameter index    (and   )

Time
or frame

index  

Training
index  
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Training of Neural Networks – Basics

Preliminary items – part 2:

❑ For a simpler description extended 
parameter vectors and extended 
signal vectors will be used in the 
following:

❑ The input of the activation function
will be denoted with 
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Back-propagation algorithm:

❑ A popular training algorithm for neural networks is the 
so-called back-propagation algorithm. 

❑ The algorithm is minimizing a cost function by means of
gradient descent steps.

❑ The chain rule in differentiation plays an important 
role and it is necessary that the activation functions
are continuous and differentiable.

❑ While the network is computed during run-time from
the input layer to the output layer, the back-propagation
algorithm works from the output layer to the input one.

Runtime

Training

Processing direction

Processing direction
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Cost function:

❑ A basic goal of the network might be to minimize the average
norm of the difference between the desired and the
estimated feature vectors:

❑ In order to achieve this goal all parameters of the neural network
are corrected in negative gradient direction (method of
steepest descent):
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Training of Neural Networks – Back Propagation

Back-propagation algorithm:

❑ The cost function is “refined” as follows:

❑ The gradient of the cost function consists of several partial differentiations:

❑ The parameters are updated during the training process according to:

Training index  

Step-size parameter
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Back-propagation algorithm:

❑ We will focus now on a single differentiation (with respect to only one parameter). Here, we insert the details of the cost function
and we omit the training index for better readability:

❑ Keep the structure of the individual neurons in mind ….
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Back-propagation algorithm:

❑ First, we will compute the update of the weights in the output layer (                 ):

❑ All individual gradients (individual for all input frames    ) can be summed and then an update is performed or an update can
be performed after each gradient computation. For reasons of brevity we will compute now only individual gradients. In 
order to compute the gradient, we split the global gradient into a product of two simpler gradients:

❑ This “trick” will be repeated but now for the multivariate case to compute the gradients for the weights of the hidden layers:
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Training of Neural Networks – Back Propagation

Back-propagation algorithm:

❑ Let’s start now with the gradient for the weights of the output layer:
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Back-propagation algorithm:

❑ For the second last layer we can do the same for the first and the last term:

❑ Now only the center term is missing:
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Training of Neural Networks – Back Propagation

Back-propagation algorithm:

❑ The missing term:

❑ Putting everything together leads to:
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Training of Neural Networks – Back Propagation

Back-propagation algorithm:

❑ Two more layers to see the structure:
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Training of Neural Networks – Back Propagation

Back-propagation algorithm:

❑ Interesting is, that the individual differentiations can be computed recursively. Let’s have a first look on the results (the third 
last layer was not derived before, but it’s straight forward). Let’s start with the last layer:

❑ Here we introduce the following “helping” variables:

❑ To be a bit more precise, we add also the iteration index:

❑ Now the update of the parameters of the last layer (change in negative gradient direction) can be written as
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Training of Neural Networks – Back Propagation

Back-propagation algorithm:

❑ Visualization – last layer:
Compute in forward direction                 and                 !

Initialize helping variables in backward direction                 

and update the parameter of the last layer       
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Training of Neural Networks – Back Propagation

Back-propagation algorithm:

❑ Now the second last layer:

❑ Here we can insert the “helping” variables from the last layer:
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Training of Neural Networks – Back Propagation

Back-propagation algorithm:

❑ Result of last slide:

❑ Again, this could be separated in two steps. First a helping variable is updated (again, now with the training index):

❑ Now, the update of the parameters of the second last layer can be performed according to
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Training of Neural Networks – Back Propagation

Back-propagation algorithm:

❑ Visualization – second last layer:
Compute in forward direction                        and                      !

Update helping variables in backward direction                 

and update the parameter of the second last layer       
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Training of Neural Networks – Back Propagation

Back-propagation algorithm:

❑ This goes on until the first layer is reached. First an update of the helping variables:

❑ And then an update of the network parameters:

❑ As in the case of codebooks, GMMs, HMMs it is checked  by using test and validation data, if the cost function does increase. In
that case the training is stopped. Furthermore, several variants of this basic update strategies have been published. Details can
be found in the references.
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❑ Motivation

❑ Structure of a (basic) neural network

❑ Applications of neural networks

❑ Types of neural networks

❑ Basic training of neural networks

❑ Backpropagation

❑ Update rules

❑ Learning rate scheduling

❑ Generative adversarial networks

Contents
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Training of Neural Networks – Update Rules

Extensions for gradient-based corrections:

❑ Two basic extensions

❑ Gradient descent with 
momentum (Momentum)

❑ Root mean square 
propagation (RMSprop)

❑ Combination of both

❑ Adaptive moment 
estimation (Adam)
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Training of Neural Networks – Update Rules

Extensions for gradient-based corrections:

❑ Two basic extensions

❑ Gradient descent with 
momentum (Momentum)

❑ Root mean square 
propagation (RMSprop)

❑ Combination of both

❑ Adaptive moment 
estimation (Adam)
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Training of Neural Networks – Update Rules

Extensions for gradient-based corrections:

❑ Recursive smoothing

❑ A compromise between being able to follow
(desired) trends in the signal and the amount
of noise reduction has to be found.

❑ After being converged this estimation is 
bias-free.

❑ In contrast to this version:
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Training of Neural Networks – Update Rules

Extensions for gradient-based corrections:

❑ Recursive smoothing with bias correction
(mainly for the startup phase):

❑ Needs to be done only for the first 
few samples.



Digital Signal Processing and System Theory | Pattern Recognition | Neural Networks Slide 118

•

Neural Networks

Training of Neural Networks – Update Rules

Extensions for gradient-based corrections:

❑ Gradient descent with momentum (Momentum)

❑ Previous update rule (without momentum, in vector notation)

❑ Previous update rule (without momentum, in scalar notation)

Step-size parameter

Step-size parameter



Digital Signal Processing and System Theory | Pattern Recognition | Neural Networks Slide 119

•

Neural Networks

Training of Neural Networks – Update Rules

Extensions for gradient-based corrections:

❑ Gradient descent with momentum (Momentum)

❑ Previous update rule (without momentum, in scalar notation)

❑ IIR smoothing of potential updates

❑ Correction into smoothed update correction

Adjusted step-size parameter
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Training of Neural Networks – Update Rules

Extensions for gradient-based corrections:

❑ Root mean square propagation (RMSprop)

❑ The short-term variations of the gradient estimations 
might vary and it’s usually advantages to take them
into account as well. 

❑ Therefore the short-term variations can be estimated 
as well:

❑ Afterwards the update can be normalized with the 
square root of this variance estimate:

Adjusted step-size parameter
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Training of Neural Networks – Update Rules

Extensions for gradient-based corrections:

❑ Adaptive moment estimation (Adam)

❑ A combination of both attempts leads to the    
so-called Adam optimization rule:
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❑ Motivation

❑ Structure of a (basic) neural network

❑ Applications of neural networks

❑ Types of neural networks

❑ Basic training of neural networks

❑ Backpropagation

❑ Update rules

❑ Learning rate scheduling

❑ Generative adversarial networks

Contents
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Learning Rate Scheduling Schemes

Basics:

❑ The learning rate (LR) is one of the most important 
hyperparameters for the training of neural networks. 

❑ The most common approach is to use a fixed learning 
rate for the entire training.

❑ Fixed Schedules change (typically reduce) the learning     
rate after a fixed amount of gradient descent steps.

❑ Adaptive Scheduling changes (typically reduces) the 
learning rate if some kind of condition is met.

https://www.jeremyjordan.me/nn-learning-rate/
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Learning Rate Scheduling Schemes

Practical example:

❑ Training a CNN on the CIFAR-10 dataset with cross 
entropy as loss function 
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Learning Rate Scheduling Schemes

Finding the best fixed learning rate

❑ The first step (and often only step) is usually to start    
with a fixed learning rate.

❑ If the learning rate is too big, the network will diverge.

❑ If the learning rate is too small, slow converge is usually       
the result.

❑ Only an appropriate learning rate will lead to timely 
convergence and good test metrics.
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Learning Rate Scheduling Schemes

Using fixed scheduling:

❑ Using fixed scheduling can help to achieve 
a better test metric earlier.

❑ Starting with the highest converging fixed 
learning rate and reducing the learning 
rate over time should lead to a higher test 
accuracy after the same amount of steps.

❑ This does, however, introduce new 
hyperparameters that need to get tuned.
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Learning Rate Scheduling Schemes

Using adaptive scheduling:

❑ Using adaptive scheduling can eliminate a 
lot of the guess work.

❑ Starting with the highest converging fixed 
learning rate and reducing the learning 
after a number of steps without 
improvement will almost always lead to 
better results.

❑ While there are still hyperparameters to 
tune, reducing the learning rate on the 
condition that the improvement of the 
network already stopped is more 
forgiving than using a fixed schedule with 
bad hyperparameters.
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Learning Rate Scheduling Schemes

Conclusion:

❑ Always start by optimizing for a fixed 
learning rate.

❑ Take inspiration on what schedule 
people are using on similar problems. 

❑ If you have too much time and 
computational power, feel free to 
experiment with the wide variety 
of learning rate schedules available 
in common ML libraries but don’t 
expect any miracles.
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❑ Motivation

❑ Structure of a (basic) neural network

❑ Applications of neural networks

❑ Types of neural networks

❑ Basic training of neural networks

❑ Backpropagation

❑ Update rules

❑ Learning rate scheduling

❑ Generative adversarial networks

❑ Reinforcement learning

Contents
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Types of Neural Networks

Network structure(s):

Multilayer perceptron AutoencoderConvolutional neural network Recurrent neural network

LSTM network “Unet” Attention-based network Generative adversarial network
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Training of Neural Networks – Generative Adversarial Networks

❑ GANs are not a new network type, it’s more
a special way of training.

❑ During runtime a single “standard” neural network 
is used. This network is called the generator network.

❑ During training a second network is additionally used,
called the discriminator network.

❑ The job of the second network is to estimate, whether
the input (of the decision network) stems from true
(desired) data or is the output of the generator
network.

❑ During the training the generator and the discriminator
network are trained in an alternating fashion.  

Basics of generative adversarial networks (GANs):

Random generator

Discriminator
network

Generator 
network
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Training of Neural Networks – Generative Adversarial Networks

❑ Example from image-to-
image translations (creation
of realistically looking 
images from label maps).

❑ GANs are good candidates if 
smoothed results are
undesired.

❑ Conditional GANs were 
compared to conventionally
trained networks.

❑ Cost function is not the mean
squared error (or variants of 
it) any more.

Motivation of GANs:

Input Output of a conven-
tionally trained network

Output of a
conditional GAN

Desired output

Source: P. Isola, J.-Y. Zhu, T. Zhou, A. A. Efros: Image-to-Image Translation with 
Conditional Adversarial Networks, CoRR, vol. abs/1611.07004, 2016.   
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Training of Neural Networks – Generative Adversarial Networks

Structure of the training procedure:

Random generator

Discriminator 
network

Generator 
network

❑ Training of the generator
network:

❑ The discriminator network is 
kept fixed.

❑ A weighted sum of the average 
norm of the error of the 
generator network 

and the inverse of the average 
classification error is

minimized (as one variant).
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Training of Neural Networks – Generative Adversarial Networks

❑ Training of the discriminator
network:

❑ The generator network is 
kept fixed.

❑ The average power of the error

(as one variant) of the 
discriminator network is
minimized.

Structure of the training procedure:

Random generator

Discrimina-
tor network

Generator 
network
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Training of Neural Networks – Generative Adversarial Networks

❑ For bandwidth extension 
GANs are also an interesting
alternative (especially 
conditional GANs).

❑ The spectral envelope is 
estimated using GANs,
the excitation signal is 
created by spectral 
repetition of the 
narrowband excitation
signal.

Bandwidth extension:

Bandlimited
input

Convent.
network

Conditional
GAN

Desired wide-
band output

Günther
Jauch

Angela
Merkel

Christoph
Waltz

Gabriele Susanne
Kerner (Nena)

Source: J. Sautter. F. Faubel, M. Buck, G. Schmidt: Artificial Bandwidth Extension Using a Conditional 
Generative Adversarial Network with Discriminative Training , Proc. ICASSP, 2019.   
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❑ Motivation

❑ Structure of a (basic) neural network

❑ Applications of neural networks

❑ Types of neural networks

❑ Basic training of neural networks

❑ Reinforcement learning
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Deep Reinforcement Learning

Reinforced Learning

❑ Started with games, now also other applications are treated.
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Deep Reinforcement Learning

Reinforced Learning

❑ Started with games, now also other applications are treated.

❑ A deep learning algorithm motivated by the mechanisms of
(human) learning through reinforcement of wanted and
punishment of unwanted behaviors.

❑ The algorithm deploys an agent maximizing a reward signal
by interacting with its environment through action choices.

❑ The reward signal encodes the control goal, rewarding action
choices causing state transitions towards the goal state and
punishing transitions towards unfavorable states.

❑ The feedback-loop of environment interactions, the returned
reward signal and environment state transitions are modeled as a  
Markov decision process. Agent-environment interaction loop

State

Reward

Action

Agent
Environ-

ment
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Deep Reinforcement Learning

Reinforced Learning

❑ Started with games, now also other applications are treated.

❑ A deep learning algorithm motivated by the mechanisms of
(human) learning through reinforcement of wanted and
punishment of unwanted behaviors.

❑ The algorithm deploys an agent maximizing a reward signal
by interacting with its environment through action choices.

❑ The reward signal encodes the control goal, rewarding action
choices causing state transitions towards the goal state and
punishing transitions towards unfavorable states.

❑ The feedback-loop of environment interactions, the returned
reward signal and environment state transitions are modeled as a  
Markov decision process.
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Deep Reinforcement Learning

Agent

❑ Agent’s task: Map a received state observation to a corresponding
action for the next environment interaction

❑ Represented by a deep neural network (e.g. CNN)

❑ Action choice evaluation with respect to state-action values 
(Q function)

❑ Expected discounted reward upon performing a specific action in a state

❑ Optimal behavior policy chooses actions maximizing state-action values

Discounted reward

Multiple possible state transitions for same action choice

Multimodal state-action value distribution
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Deep Reinforcement Learning

Applications

❑ Real-time, autonomous, and robust control (of a system)
under environmental constraints 

❑ Able to handle complex parametrization state spaces

❑ Manage increasing complexity of modern systems

❑ Example: Long-term autonomous parametrization
control of a MIMO-SONAR system for monitoring or 
detection purposes

❑ Monitoring of a port environment
❑ Detection of gas bubbles in the water column
❑ Scan parametrization adjustment in relation to

observed environment

Reinforcement learning-based SONAR system control loop
State

Reward

Action

Agent
Environ-

ment

Projector
processing

Hydrophone
processing

Artificial intelligence Conventional SONAR pro-
cessing (part of environment)

Environment 
(ocean)
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Deep Reinforcement Learning

Training

❑ Neither supervised 
nor unsupervised 
training

❑ Instead: Dynamically 
generated data by 
a virtual training 
environment

❑ Emulates state 
dynamics and 
returns 
observations of the 
real environment

Deep reinforcement learning training architecture

Agent
Environ-

ment

Projector
processing

Hydrophone
processing

Artificial intelligence Conventional SONAR 
processing

Environment 
(ocean)

Environmental
control

Driver
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Deep Reinforcement Learning

Training

❑ Neither supervised 
nor unsupervised 
training

❑ Instead: Dynamically 
generated data by 
a virtual training 
environment

❑ Collection phase:
Freeze agent’s 
policy to collect 
action, state, 
and rewards
transitions as 
experiences in 
a experience 
replay memory Deep reinforcement learning training architecture

Agent
Environ-

ment

Projector
processing

Hydrophone
processing

Artificial intelligence Conventional SONAR 
processing

Environment 
(ocean)

Environmental
control

Driver

Experience tuples
Exp. replay

memory

Experience replay
memory
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Deep Reinforcement Learning

Training

❑ Neither supervised 
nor unsupervised 
training

❑ Instead: Dynamically 
generated data by 
a virtual training 
environment

❑ Collection phase

❑ Training phase

❑ Resample 
experience 
replay memory 
to train the 
neural network

Deep reinforcement learning training architecture

Agent
Environ-

ment

Projector
processing

Hydrophone
processing

Artificial intelligence Conventional SONAR 
processing

Environment 
(ocean)

Environmental
control

Driver

Experience tuples
Exp. replay

memory

Experience replay
memory

Training

Updated
agent
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Deep Reinforcement Learning

Exploration versus Exploitation

❑ How to set the agent’s initial policy for collecting experiences?

❑ No a priori environment information: Random initialization

❑ Exploration rate

❑ Probability of acting according to a random policy
❑ Guarantees random exploration of unknown environment
❑ Decayed over total training episodes

❑ Transition from exploration to exploitation

❑ Exploitation of gathered experiences

❑ Improve policy by learning which actions maximize state-action
values for which environment states

Exploration rate decay over total training episodes
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Deep Reinforcement Learning

Applications (repeated)

❑ Real-time, autonomous, and robust control (of a system)
under environmental constraints 

❑ Able to handle complex parametrization state spaces

❑ Manage increasing complexity of modern systems

❑ Example: Long-term autonomous parametrization
control of a MIMO-SONAR system for monitoring or 
detection purposes

❑ Monitoring of a port environment
❑ Detection of gas bubbles in the water column
❑ Scan parametrization adjustment in relation to

observed environment

Reinforcement learning-based SONAR system control loop
State

Reward

Action

Agent
Environ-

ment

Projector
processing

Hydrophone
processing

Artificial intelligence Conventional SONAR pro-
cessing (part of environment)

Environment 
(ocean)
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Deep Reinforcement Learning

Example: SONAR Port Monitoring

❑ Port environment with ships stationed inside

❑ Monitoring for potential intruders trying to damage a ship
❑ SONAR system inside the port is able to scan different 

areas of the port by utilizing different scan modes 

❑ Virtual training environment models real port environment

❑ Simulated acoustic targets & SONAR scan observations

❑ Scan modes differ in their system parametrization

❑ Signal- and ping durations
❑ Transmit power
❑ Transmit and receive configuration

❑ SIMO, MISO, MIMO
❑ Beamforming operation

WTD marine arsenal as port environment model
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Deep Reinforcement Learning

Example: SONAR Port Monitoring

SONAR scan modes

❑ Port environment with ships stationed inside

❑ Monitoring for potential intruders trying to damage a ship
❑ SONAR system inside the port is able to scan different 

areas of the port by utilizing different scan modes 

❑ Virtual training environment models real port environment

❑ Simulated acoustic targets & SONAR scan observations

❑ Scan modes differ in their system parametrization

❑ Signal- and ping durations
❑ Transmit power
❑ Transmit and receive configuration

❑ SIMO, MISO, MIMO
❑ Beamforming operation
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Deep Reinforcement Learning

Agent‘s Goal

❑ Reliable detection of potential attackers through proper choice of 
the SONAR scans to be performed

❑ Ensonify the attacker‘s area of location
❑ Scan modes represent the agent‘s action space

❑ Coastal guards are sent out for interception if a potential attacker 
is assumed to be present 

❑ Detect as fast as possible to avoid potential harm
❑ Avoid unnecessary false alarms

❑ Deployment on mobile platforms with limited energy resources

❑ Save energy through standby mode if the current risk is low Attacker following different stategies to reach target ship
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Deep Reinforcement Learning

Agent‘s Goal

Interception of attacker through coastal guards

❑ Reliable detection of potential attackers through proper choice of 
the SONAR scans to be performed

❑ Ensonify the attacker‘s area of location
❑ Scan modes represent the agent‘s action space

❑ Coastal guards are sent out for interception if a potential attacker 
is assumed to be present 

❑ Detect as fast as possible to avoid potential harm
❑ Avoid unnecessary false alarms

❑ Deployment on mobile platforms with limited energy resources

❑ Save energy through standby mode if the current risk is low
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Deep Reinforcement Learning

Reward Function

❑ Designed according to given goals

❑ Physically motivated costs for performing scans
❑ Safety costs for reliable and fast detections
❑ Monetary costs for coastal guard alarms

❑ Reinforce wanted behavior (pos. reward)

❑ Saving energy (performing no scan)
❑ Enabling successful coastal guard interception

❑ Reliable & fast detection

❑ Punish unwanted behavior (neg. reward)

❑ Slow/missed detections
❑ False alarms

❑ Interferes with normal port routines
and operation costs money

❑ Wasting energy (unecessary scans)

Tx power and scaling
Num. proj.

Signal duration



Digital Signal Processing and System Theory | Pattern Recognition | Neural Networks Slide 152

•

Neural Networks

Deep Reinforcement Learning

Reward Function

Combination of multiple reward and cost terms

❑ Designed according to given goals

❑ Physically motivated costs for performing scans
❑ Safety costs for reliable and fast detections
❑ Monetary costs for coastal guard alarms

❑ Reinforce wanted behavior (pos. reward)

❑ Saving energy (performing no scan)
❑ Enabling successful coastal guard interception

❑ Reliable & fast detection

❑ Punish unwanted behavior (neg. reward)

❑ Slow/missed detections
❑ False alarms

❑ Interferes with normal port routines
and operation costs money

❑ Wasting energy (unecessary scans)
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Deep Reinforcement Learning

Training Results

❑ Agent‘s learned policy depends on total training iterations

❑ Longer training enables agent to fully explore the
environment and experience multiple scenarios

❑ Strategy improves over time by exploitation of 
gathered attack scenarios & outcome knowledge

❑ 1000 training iterations

❑ Only basic strategy of scanning the far-field is learned

❑ Agent always monitors the port entrance

❑ Assumes attacker to enter there
❑ Misses attackers hiding in wall reflections! Action choices and evaluation statistics
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Deep Reinforcement Learning

Basic Monitoring Strategy

❑
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Deep Reinforcement Learning

Training Results

❑ 100.000 training iterations

❑ Utilization of all scan modes

❑ Improved detection rate

❑ Use of standby mode for low risk situations

❑ Improved energy consumption

❑ Agent learned reliable detection strategy

Action choices and evaluation statistics
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Deep Reinforcement Learning

Advanced Monitoring Strategy

❑
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Deep Reinforcement Learning
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Summary and Outlook

Summary:

❑ Motivation

❑ Structure of a (basic) neural network

❑ Applications of neural networks

❑ Types of neural networks

❑ Basic training of neural networks

Next part:

❑ Hidden Markov Models (HMMs)


