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Features for Speech and Speaker Recognition – Fundamental Frequency

Fundamental frequency:

❑ Feature extraction mostly with autocorrelation 
based methods.

❑Used for (rough) discrimination between
male, female, and children‘s speech.

❑ The contour of the fundamental frequency be used 
for estimating accentuations in speech (helpful for 
recognizing questions, grouped phone numbers) or 
the emotional state of the speaker.

❑ Certain types of noise can be distinguished from speech by estimating the fundamental frequency (e.g. „GSM buzz“)

❑ It can be of advantage to „normalize“ the frequency axis to the average fundamental frequency of a speaker.
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Features for Speech and Speaker Recognition – Spectral Envelope

Spectral envelope

❑ The spectral envelope is currently the most important feature in speech and speaker recognition.

❑ The spectral envelope is extracted every 10 to 20 ms and then used in subsequent algorithms  such as speech recognition 
or coding.

❑ In order  to reduce the computational complexity of the subsequent signal processing, the envelope should be computed 
compact (with a low number of relevant parameters) and in a form that a suitable for a cost function.

❑ Some signal processing techniques (e.g. bandwidth extension, speech reconstruction) need a representation of the spectral 
envelope that can also be used in the signal path. Other methods (e.g. speech and speaker recognition) are not bound to 
this condition.

❑ Typically, either cepstral coefficients, so called mel-filtered cepstral coefficients or mel-frequency cepstral coefficients 
(MFCCs) are used.
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Representation of the Spectral Envelope Using Cepstral Coefficients

Block extraction, 
downsampling 

(possibly windowing)
Estimation of the
auto correlation

Computation of the
predictor coefficients

Conversion into
cepstral coefficients
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Predictor Error Filter – Part 1

Cost function for optimizing the coefficients:

Frequency components with high signal power will be attenuated first (Parseval).

This causes spectral flattening (whitening) of the spectrum.

Structure of a prediction error filter:
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Predictor Error Filter – Part 2

Structure of a prediction error filter and an inverse filter:

The FIR version of the
filter removes the
spectral envelope.

The IIR version of the
filter reconstructs it.
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Predictor Error Filter – Part 3

Frequency responses of inverse predictor error filters:

Typically, 
prediction orders 
between 10 and 20 
are used for 
representing the 
spectral envelope.
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Computation of the Predictor Coefficients – Part 1

❑ Cost function

❑ Error signal:

❑ Differentiating the cost function:

Derivation:
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Computation of the Predictor Coefficients – Part 2

❑ Differentiating the cost function resulted in: 

❑ Setting the derivative to zero:

Derivation:
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Computation of the Predictor Coefficients – Part 3

❑ Setting the derivative to zero resulted in: 

❑ Equation system with N equations:

Derivation:
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Computation of the Predictor Coefficients – Part 4

❑ Matrix-vector notation: 

❑ Compact notation:

Derivation:

Computationally efficient and robust solution of the 
equation system e.g. using Levinson-Durbin-Recursion.
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Computation of the Predictor Coefficients – Part 5

Matlab example:
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Representation of the Spectral Envelope Using Cepstral Coefficients – Part 1

❑ A cost function should capture „distances“ between spectral envelopes. Similar envelopes should cause a small distance, 
envelopes that differ a lot should lead to large distances, and identical envelopes should cause a distance of zero.

❑ The cost function should be invariant to variations in the recording level/gain of the input signal.

❑ The cost function should be „easy“ to compute.

❑ The cost function should be similar to the human perception of sound (e.g. regarding the logarithmic loudness perception).   

Requirements:

Ansatz:

Cepstral distance
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Representation of the Spectral Envelope Using Cepstral Coefficients – Part 2

Ansatz:

Frequency in Hz

Envelope 1
Envelope 2

Cepstral distance
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Representation of the Spectral Envelope Using Cepstral Coefficients – Part 3

A well-known alternative – the quadratic distance:

Frequency in Hz

Envelope 1
Envelope 2

Quadratic distance
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Representation of the Spectral Envelope Using Cepstral Coefficients – Part 4

Parseval

mit

Cepstral distance:
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Representation of the Spectral Envelope Using Cepstral Coefficients – Part 5

❑ Definition

❑ Fourier-Transform for time-discrete signals and systems

❑ Replacing        by

Computationally efficient transformation from prediction to cepstral coefficients:
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Representation of the Spectral Envelope Using Cepstral Coefficients – Part 6

❑ Result so far

❑ Inserting the structure of the inverse prediction error filter

Computationally efficient transformation from prediction to cepstral coefficients:



Digital Signal Processing and System Theory | Pattern Recognition | Feature Extraction Slide 22

•

Feature Extraction

Representation of the Spectral Envelope Using Cepstral Coefficients – Part 7

❑ Result so far

❑ Computation of the coefficients with non-negative indices

❑ Using the series

Insert

Computationally efficient transformation from prediction to cepstral coefficients:
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Representation of the Spectral Envelope Using Cepstral Coefficients – Part 8

Computationally efficient transformation from prediction to cepstral coefficients:

❑ Computation of the coefficients with non-negative indices:

❑ Result after inserting the series:

❑ This results in

All coefficients with non-negative indices are zero.
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Representation of the Spectral Envelope Using Cepstral Coefficients – Part 9

Computationally efficient transformation from prediction to cepstral coefficients:

❑ Result so far

❑ Take the derivative

❑ Multiply both sides with […]
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Representation of the Spectral Envelope Using Cepstral Coefficients – Part 10

Computationally efficient transformation from prediction to cepstral coefficients:

❑ Result so far

❑ Comparing the coefficients for 

❑ Comparing the coefficients for



Digital Signal Processing and System Theory | Pattern Recognition | Feature Extraction Slide 26

•

Feature Extraction

Representation of the Spectral Envelope Using Cepstral Coefficients – Part 11

Computationally efficient transformation from prediction to cepstral coefficients:

Recursive computation with very low complexity. The 
summation can be stopped with low error after 3/2 N because 
cepstral coefficients with a higher index contribute only very 
little to the underlying cost function.
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Representation of the Spectral Envelope Using Cepstral Coefficients – Part 12

Block extraction, 
downsampling

(possibly windowing)
Estimation of the
autocorrelation

Computation of the
predictor coefficients

Convertion to
cepstral coefficients

❑ Typically, every 5 to 20 ms 15 to 30 cepstral coefficients are computed.

❑ Therefore, 10 to 20 predictor coefficients are computed.

❑ The autocorrelation values that are needed therefore are computed  on 
an estimation basis of 20 to 50 ms of signal.

❑ This type of feature is commonly used when both spectral envelope 
and prediction error signal are used (coding, bandwidth extension, 
speech reconstruction).
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Mel-Filtered Cepstral Coefficients (MFCCs) – Part 1

Block extraction, 
downsampling, 
and windowing

Discrete Fourier-
transform

(Squared)
magnitude

computation

Mel 
filteringLogarithm

Discrete
cosine transform

Overview:
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Mel-Filtered Cepstral Coefficients (MFCCs) – Part 2

Block extraction, downsampling, and windowing:

Block extraction, 
downsampling, 
and windowing

Discrete Fourier-
transform

(Squared)
magnitude

computation

Mel 
filtering

LogarithmDiscrete
cosine transform

❑ Block extraction:

❑ Downsampling

❑ Windowing:
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Mel-Filtered Cepstral Coefficients (MFCCs) – Part 3

Discrete Fourier-transform :

Block extraction, 
downsampling, 
and windowing

Discrete Fourier-
transform

(Squared)
magnitude

computation

Mel 
filtering

LogarithmDiscrete
cosine transform

❑ Discrete Fourier transform:

❑ In Matrix-vector notation:
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Mel-Filtered Cepstral Coefficients (MFCCs) – Part 4

Influence of the window function:

Input signal: two sinusoids with frequencies
300 Hz and 5000 Hz, amplitude ratio 66 dB

FFT-order and window length: 512

Frequency in Hz

Rectangle win.
Hann window
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Mel-Filtered Cepstral Coefficients (MFCCs) – Part 5

Block extraction, 
downsampling, 
and windowing

Discrete Fourier-
transform

(Squared)
magnitude

computation

Mel 
filtering

LogarithmDiscrete
cosine transform

❑ Squared magnitude:

❑ Approximation of the magnitude (reduced dynamic, reduced computational load):

❑ In matrix-vector-notation:

(Squared) magnitude computation:
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Mel-Filtered Cepstral Coefficients (MFCCs) – Part 6

Block extraction, 
downsampling, 
and windowing

Discrete Fourier-
transform

(Squared)
magnitude

computation

Mel
filtering

LogarithmDiscrete
cosine transform

❑ Mel-frequency relation:

❑ Linear splitting of the mel domain into N intervals of the same width

❑ Overlapping of the intervals by 50 % percent with the left and right neighbor

❑ Usually, triangular-shaped windows (in the linear frequency domain) are used

❑ The triangular filters are usually normalized such that the produce the same 
output power when they are excited with white noise.

Mel filtering – part 1:
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Mel-Filtered Cepstral Coefficients (MFCCs) – Part 7

Mel filtering – part 2:

Splitting the mel range into 11 equally wide intervals

Frequency in Hz

Fr
eq

u
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el



Digital Signal Processing and System Theory | Pattern Recognition | Feature Extraction Slide 35

•

Feature Extraction

Mel-Filtered Cepstral Coefficients (MFCCs) – Part 8

Mel filtering – part 3:

Frequency in Hz

Frequency in Hz

Logarithmic plot

Linear plot
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Mel-Filtered Cepstral Coefficients (MFCCs) – Part 9

Block extraction, 
downsampling, 
and windowing

Discrete Fourier-
transform

(Squared)
magnitude

computation

Mel 
filtering

LogarithmDiscrete
cosine transform

❑ Typically, 15 to 30 mel filters are used for sample rates between 8 and 16 kHz

❑ Matrix-vector notation:

❑ The filter matrix M:

Mel filtering – part 4:

Subband index
M

el
 in

d
ex
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Mel-Filtered Cepstral Coefficients (MFCCs) – Part 10

Logarithm – part 1:

Block extraction, 
downsampling, 
and windowing

Discrete Fourier-
transform

(Squared)
magnitude

computation

Mel 
filtering

LogarithmDiscrete
cosine transform

❑ Logarithm:

❑Alternatively, another base can be used for the logarithm.

❑ Similar to the mel filter bank, also the logarithm is motivated by the 
human hearing. It is a simple approximation of the loudness.
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Mel-Filtered Cepstral Coefficients (MFCCs) – Part 11

Logarithm – part 2:

Representation of

over the time

Representation of

over the time

Representation of

over the time

The size of the picture respresents the amount of data!
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Mel-Filtered Cepstral Coefficients (MFCCs) – Part 12

Discrete cosine transform – part 1:

Block extraction, 
downsampling,
and windowing

Discrete Fourier-
transform

(Squared)
magnitude

computation

Mel
filtering

LogarithmDiscrete
cosine transform

❑ Symmetric extension of the logarithmic mel regions:

❑ Extension matrix E:

❑ Transform into the „time-domain“:
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Mel-Filtered Cepstral Coefficients (MFCCs) – Part 13

Discrete cosine transform – part 2:

Block extraction, 
downsampling ,
and windowing

Discrete Fourier-
transform

(Squared)
magnitude

computation

Mel 
filtering

LogarithmDiscrete 
cosine transform

❑ Because the input vectors are real-valued, the IDFT can be transformed 
into (a variant) of the IDCT.

❑ Shortening of the inversely transformed vector:

❑ The transformation causes a „decorrelation“ of the logarithmic features. 
It is an approximation of a principal component analysis.

❑ The shortening should reduce the influence of the fundamental speech 
frequency, i.e. coefficients for the high frequencies are omitted. Typically, 
the last third of the vector is removed.
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Mel-Filtered Cepstral Coefficients (MFCCs) – Part 14

❑ For analysis of the decorrelation property of the inverse DCT, the feature vectors are first normalized by their variance after 
the mean has been removed.

The normalization matrices contain the inverse standard deviations on their main diagonals.

❑Afterwards, the autocorrelation matrix of both types of feature vectors are estimated:

Discrete cosine transform – part 3:
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Mel-Filtered Cepstral Coefficients (MFCCs) – Part 15

Discrete cosine transform – part 4:

Autocorrelation, variance normalized (before DCT) Autocorrelation, variance normalized (after DCT)
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Mel-Filtered Cepstral Coefficients (MFCCs) – Part 16

Discrete cosine transform – part 4:

Autocorrelation, variance normalized (after DCT)Autocorrelation, variance normalized (before DCT)
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Postprocessing

Outlook:

❑Often, several subsequent features are combined after the feature extraction. In some cases, the difference of to 
subsequent vectors is formed (so-called delta features) or even the difference of two subsequent differences (so-called 
delta-delta features).

❑As an alternative, so-called super vectors can be formed by appending some subsequent feature vectors. Because the 
feature dimensionality is increased by doing so, so-called LDA matrices may be applied (LDA = linear discriminant analysis). 
The goal is to reduce the variance of features that belong to one class, while maximizing the distance between classes. This 
allows to reduce the dimensionality of the feature space without loosing too much of the accuracy of the model.
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Summary and Outlook

Summary:

❑ Introduction

❑ Features for speech and speaker recognition

❑ Pitch frequency

❑ Spectral envelope

❑ Representations for the spectral envelope

❑ Coefficients of a prediction filter

❑ Cepstral coefficients

❑ Mel-filtered/frequency cepstral coefficients (MFCCs)

Next part:

❑ Training of codebooks


