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Introduction – Part 1

Rear-view mirror

Microphone modul 
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Introduction – Part 2

Basis structure:

Difference equation:
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Introduction – Part 3

Difference equation in vector notation:

with

For fixed (time-invariant) beamformers we get:



Digital Signal Processing and System Theory | Pattern Recognition | Beamforming Slide 7

•

Beamforming

Introduction – Part 4

Microphone positions and coordinate systems:

Mic. 0

Mic. 1

Mic. 2

Mic. 3

❑ The origin of the coordinate system is often chosen as the sum of the vectors 
pointing at the individual microphones:

❑ The vector     points to the direction of the incoming sound
and has a unit length:

❑ If we assume plain wave sound propagation (far-field approximation), 
we obtain a delay of 

for sound arriving from direction    .
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Introduction – Part 5

Directivity due to filtering and sensor characteristics:

Mic. 0

Mic. 1

Mic. 2

Mic. 3

❑ Directivity can be achieved either by spatial filtering of the microphone signals
according to 

or by the sensors themselves (e.g. due to cardioid characteristics).

❑ If we use spatial filtering a reference for the disturbing signal components can 
be estimated. This can be exploited by means of, e.g. a Wiener filter and 
leads to an additional directivity gain.
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Quality Measures of Multi-Microphone Systems – Part 1

Assumptions for computing a „spatial frequency response”:

❑ The sound propagation is modeled as plane wave:

❑ Each microphone has got a receiving characteristic, which can be described as

.

For microphones with omnidirectional characteristic the following equation holds,

Microphones with cardioid characteristic can be described as
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Quality Measures of Multi-Microphone Systems – Part 2

Spatial frequency response

❑ With the above assumptions the desired signal component of the output spectrum of a single microphone can be written as

❑ The output spectrum of the beamformer can consequently be written as

❑ Finally the spatial frequency response is defined as follows,
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Quality Measures of Multi-Microphone Systems – Part 3

Examples of spatial frequency responses

❑ 4 microphones in a row in intervals of 3cm were used.
❑ The microphone signals were just added and weighted with ¼ .

Omnidirectional characteristic Cardioid characteristic
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Quality Measures of Multi-Microphone Systems – Part 4

Beampattern

❑ The squared absolute of the spatial frequency response is called beampattern:

❑ If all microphones have the same beampattern, the influences of the microphones and of the signal processing can be separated:
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Quality Measures of Multi-Microphone Systems – Part 5

Array gain:

❑ If a characteristic number is needed, the so-called array gain can be used,

❑ The vector      is pointing into the direction of the desired signal.

❑ The logarithmic array gain

is called directivity index.

❑ Both quantities describe the gain compared to an onmidirectional sensor (e.g., a microphone with omnidirectional characteristic).
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Delay-and-Sum Structure – Part 1

Basic structure

Delay
compensation

❑ The microphone signals are being delayed in such a way that all 
signals from a predefined preferred direction are synchronized after 
the delay compensation.

❑ In the next step, the signals are weighted and added in such a way 
that at the output, the signal power of the desired signal from the 
preferred direction is the same as at the input (but without 
reflections).

❑ Interferences which do not arrive from the preferred direction, will 
not be added in-phase and will therefore be attenuated.
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Delay-and-Sum Structure – Part 2

Identify the necessary delays

Mikrophones

Center of
the array

Incoming
plane wave

❑ In the case of a linear array with constant microphone distance, the 
distance of the mth microphone to the center of the array can be calculated 
as

❑ Based on this distance, we can calculate the time delay of the plane wave 
to arrive at the mth microphone,

❑Using the sample rate, the time delay can be expressed in frames, 



Digital Signal Processing and System Theory | Pattern Recognition | Beamforming Slide 16

•

Beamforming

Delay-and-Sum Structure – Part 3

Optimal solution

Implementation in time domain (example)

❑ The optimal impulse response is delayed to make it causal, and is then „windowed“,

❑ As window function, for example the Hann window can be chosen,
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Delay-and-Sum Structure – Part 4

Implementation in time domain (example)

❑Goal:  Design a filter with group delay of 10.3 samples. 

❑ Constraint: 21 filter coefficients may be used.

Group delay

Frequency response

Sa
m

p
le

s
d

B

sinc function (with rectangular window)
sinc function (with Hann window)

sinc function (with rectangular window)
sinc function (with Hann window)
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Delay-and-Sum Structure – Part 5

Implementation in the frequency domain

Analysis
filterbank

Synthesis
filterbank

Using:
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Filter-and-Sum Structure – Part 1

Basic principle

Delay 
compensation

❑ In addition to the delay compensation, the array 
characteristic are to be improved using filters.

❑ As soon as the beamformer properties are better than the 
delay-and-sum approach, the beamformer is called 
superdirective.

❑ The introduced filters are designed to be optimal for the 
broadside direction as preferred direction.

Superdirective 
filters
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Filter-and-Sum Structure – Part 2

Filter design

❑ Difference equation:

❑ Optimization criterion:

with the constraint
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Filter-and-Sum Structure – Part 3

Constraints of the filter design

This means: Signals from the broadside direction can pass the filter 
network without any attenuation.

The „zero solution“ is excluded by introducing the constraint!
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Filter-and-Sum Structure – Part 4

❑ Introducing overall signal vectors and overall filter vectors:

❑ Subsequently, the beamformer output signal can be written as follows:

❑ The mean output signal power results in:

Filter design
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Filter-and-Sum Structure – Part 5

❑ The constraint can be rewritten as follows:

❑ Then, using a Lagrange approach the following function can be minimized:

❑ Calculating the gradient with respect to       results in:

Filter design
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Filter-and-Sum Structure – Part 6

❑ Setting the gradient to zero results in:

❑ Inserting this result into the constraint we get:

❑ Resolving this equation to the Lagrange multiplication vector results in:

❑ Finally, we get:

Filter design

The filter coefficients are defined by the auto correlation matrix of the interference sound field!
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Filter-and-Sum Structure – Part 7

❑Goal: Design filters for a microphone array consisting 
of 4 microphones.

❑ The microphone distance is 4 cm.
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Interference Cancellation 

❑Up to now, we had to make assumptions about the properties of the sound field. If this is not possible, we should use an 
adaptive error power minimization instead.

❑ A direct application of adaptive algorithms would lead to the so-called „zero solution“ (all filter coefficients are zero). So as 
before, we need to introduce a constraint.

❑ This constraint can either be taken care of when calculating the gradient (e.g., using the Frost approach), or implemented in the 
filter structure using a desired signal blocking. The latter is much more efficient.

❑ The desired signal blocking has the task to block the desired signal completely but to let pass all interferences. Using this
output signal, a minimization of the error power without constraints can be applied.

Basic principle
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Interference Cancellation – Blocking the desired signal (part 1)

Subtraction of delay-compensated microphone signals

Delay com-
pensation

Fixed 
beamformer

Blocking 
beamformer

Interference 
cancellation
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Interference Cancellation – Blocking the Desired Signal (Part 2)

Subtracting the delay-compensated microphone signals

Advantages:

❑ Very simple and computationally efficient structure.

❑ Besides just to subtract the signals, also the principles of filter design may be applied. Hereby, the width of the blocking
can be controlled.

Drawbacks:

❑ In the case of errors in the delay compensation, or if different sensors are used, the desired signal may pass the blocking 
structure and may be compensated unintentionally.

❑ Echo components of the desired signal may pass the blocking structure, which may equally lead to a compensation of the 
desired signal.

Conclusion:

❑ This blocking structure is usually used to classify the current situation (e.g., „desired signal active“, „interference active“, etc.). 
Based on this classification, further and more sophisticated approaches may be regulated.
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Interference Cancellation – Blocking the Desired Signal (Part 3)

Adaptive subtraction of delay-compensated microphone signals

Delay com-
pensation

Fixed 
beamformer

Blocking 
beamformer

Interference 
cancellation
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Interference Cancellation – Blocking the Desired Signal (Part 4)

Advantages:

❑ Errors in the delay compensation may be compensated (provided that the situation was classified correctly).

❑ Echo components can be (partly) removed. 

❑ The structure can be used to localize the desired speaker (topic for a talk...)

Drawbacks:

❑ In the adaption, a constraint has to be fulfilled (e.g., the sum of the norms of the filters has to be constant).

❑ A robust control of the filter adaption is necessary.

Adaptive subtraction of delay-compensated microphone signals
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Interference Cancellation – Blocking the Desired Signal (Part 5)

Adaptive subtraction of delay-compensated microphone signals and beamformer output

Delay com-
pensation

Fixed 
beamformer

Blocking 
beamformer

Interference 
cancellation
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Interference Cancellation – Blocking the Desired Signal (Part 6)

Advantages:

❑ Echo components can be (party) removed.

❑ The reference signal of the desired speaker (beamformer output) has a better signal-to-noise ratio than using the 
adaptive microphone signal filtering.

❑Only one signal has to be kept in memory (less memory requirements than the structure before).

Drawbacks:

❑ To approximate the inverse room transfer function, usually more parameters are necessary (compared to direct approximation).

❑ A robust control of the filter adaption is necessary.

Adaptive subtraction of delay-compensated microphone signals and beamformer output
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Interference Cancellation – Blocking the Desired Signal (Part 7)

Differences between the blocking structures:

The approximation of inverse impulse responses is 
necessary (zeros-only model)!
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Interference Cancellation – Blocking the Desired Signal (Part 8)

Double-adaptive subtraction of microphone signals and beamformer output

Delay com-
pensation

Fixed 
beamformer

Blocking 
beamformer

Interference 
cancellation
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Interference Cancellation – Blocking the Desired Signal (Part 9)

Advantages:

❑ Echo components can be (partly) removed.

❑ The reference signal of the desired speaker (beamformer output) has a better signal-to-noise ratio than using the adaptive 
microphone signal filtering. 

❑ The approximation of inverted transfer functions is not necessary.

Drawbacks:

❑ A robust control of the filter adaption is necessary.
❑ Again, we need to normalize (at least one) filter norm.

Double-adaptive subtraction of microphone signals and beamformer output
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Audio Examples and Results – Part 1

Single microphone

Fixed beamformer

Adaptive beamformer

❑ 4-channel microphone array

❑Directional noise source (loudspeaker of the vehicle)

❑Noise suppression > 15 dB by adaptive filtering of the 

microphone signals

Time [s]

Single microphone
Fixed beamformer
Adaptive beamformer
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Audio Examples and Results – Part 2

❑ Noise and speech have been added with different weights

❑ Speech model with 40 command words for radio and telephone applications

❑ 16 speakers (9 male, 7 female) 

Recognition rates of a dialog system

From E. Hänsler, 
G. Schmidt: 
Acoustic Echo and 
Noise Control, 
Wiley, 2004, with 
permission.
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Driving sounds (wind, engine, tires) Defrost at full power

Single microphone
Beamformer with 4 mics

Single microphone
Beamformer with 4 mics
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Postfiltering – Part 1

Previous structure (excerpt in subband domain)

Desired signal 
beamformer

Blocking 
beamformer

Interference 
cancellation

Delay-compensated 
microphone spectra

Improved signal 
spectrum

References for 
interfering parts
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Postfiltering – Part 2

Extended structure (excerpt in subband domain)

Desired signal 
beamformer

Blocking 
beamformer

Interference 
cancellation

Improved signal 
spectrum

Estimation of the 
interference power

Estimation of the 
beamformer gain

Loss 
characteristic
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Postfiltering – Part 3

Boundary conditions:

❑ Two (ideal) omnidirectional microphones ❑ Microphone distance 10 cm

Beampattern for the summation path Beampattern for the blocking part
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Postfiltering – Part 4

Boundary conditions

❑ Microphone array consisting of 4 microphones.

❑ While the recording, the direction indicator is active

Results

❑ The sound of the direction indicator can be removed 
during speech pauses.

❑ During speech activity, the indicator sound can be 
removed only partly.

Indicator
noise

Indicator
noise
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Postfiltering – Part 5

Passenger Passenger PassengerDriver Driver Driver

Boundary conditions

❑ Microphone array consisting of 4 microphones.

❑ The passenger says the name of a city, where after the 
driver repeats the name of the city.
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Summery and Outlook

Summary:

❑ Introduction

❑ Quality measures for multi-microphone systems

❑ Delay-and-sum schemes

❑ Filter-and-sum schemes

❑ Interference cancellation

❑ Audio examples and results

❑ Post-filter schemes

Next part:

❑ Feature extraction


