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DFT and FFT

Definitions

Basic definitions (assumed to be known from lectures about signals and systems): 

The Discrete Fourier Transform (DFT):

The inverse Discrete Fourier Transform (IDFT):

with the so-called twiddle factors

and       being the number of DFT points.
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DFT and FFT

Linear and Circular Convolution – Part 1

Basic definitions of both types of convolutions

A linear convolution of two sequences            and           with              is defines as

A circular convolution of two periodic sequences            and            with                                            and with the same period 
if defined as

The parameter      needs only to fulfill               . 
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DFT and FFT

Linear and Circular Convolution – Part 2

The DFT and it’s relation to circular convolution – Part 1:

The DFT is defined as the transform of the periodic signal with length     . Thus, we have

Applying the DFT to a circular convolution leads to 

with

This means that a circular convolution can be performed very efficiently 
(see next slides) in the DFT domain!
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DFT and FFT

Linear and Circular Convolution – Part 3

The DFT and it’s relation to circular convolution – Part 2:

Proof of the DFT relation with the circular convolution on the blackboard …



•

Digital Signal Processing and System Theory | Advanced Digital Signal Processing| DFT and FFT Slide 7

DFT and FFT

Linear and Circular Convolution – Part 4

Example: Periodic 
extension

Periodic 
extension

Periodic 
extension

Periodic 
extension

Periodic 
extension

Periodic 
extension

Periodic 
extension

Periodic 
extension

Periodic 
extension

Due to the “single impulse behavior” 
of            the value at             is 
extracted and used at         !

Due to the “single impulse behavior” 
of            the value at             is 
extracted and used at         !

Periodic 
extension
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DFT and FFT

Linear Filtering in the DFT Domain – Part 1

DFT and linear convolution for finite-length sequences – Part 1

Basic ideas

❑ The filtering operation can also be carried out in the frequency domain using the DFT. 
This is very attractive, since fast algorithms (fast Fourier transforms) exist.

❑ The DFT only realizes a circular convolution. However, the desired operation for linear filtering is linear convolution. 
How can this be achieved by means of the DFT?

Given a finite-length sequence           with length        and            with length       :

❑ The linear convolution is defined as:

with a length                          of the convolution result          .

❑ The frequency domain equivalent is
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DFT and FFT

Linear Filtering in the DFT Domain – Part 2

DFT and linear convolution for finite-length sequences – Part 2

Given a finite-length sequence           with length        and            with length        (continued):

❑ In order to represent the sequence          uniquely in the frequency domain by samples of its spectrum             , 
the number of samples must be equal or exceed                         . Thus, a DFT of size                                 is required.

❑ Then, the DFT of the linear convolution                        

is

This result can be summarized as follows:

❑ The circular convolution of two sequences           with length        and            with length       leads to the same result as the 
linear convolution                          when the lengths of            and            are increased to                  by zero padding.

Explanation on the blackboard (if required) …
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DFT and FFT

Linear Filtering in the DFT Domain – Part 3

DFT and linear convolution for finite-length sequences – Part 3

Alternative interpretation:

❑ The circular convolution can be interpreted as a 
linear convolution with aliasing.

❑ The inverse DFT leads to the following sequence in 
the time-domain:

❑ For clarification, see example on the right.

Input signals …

Linear convolution …

Right shifted result …

Left shifted result …

Circ. convolution for M = 6 …

Circ. convolution for M = 12 …
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DFT and FFT

Linear Filtering in the DFT Domain – Part 4

DFT and linear convolution for infinite or long sequences – Part 1

Basic objective:

❑ Filtering a long input signal          with a finite impulse response          of length       :

First possible realization: the overlap-add method

❑ Segment the input signal into separate (non-overlapping) blocks:

❑ Apply zero-padding for the signal blocks                              and for the impulse response                          to obtain a block 
length                                     . The non-segmented input signal can be reconstructed according to
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DFT and FFT

Linear Filtering in the DFT Domain – Part 5

DFT and linear convolution for infinite or long sequences – Part 2

First possible realization: the overlap-add method (continued) 

❑ Compute     –point DFTs of            and          (need to be done only once) and multiply the results:

❑ The     –point inverse DFT                                               yields data blocks that are free from aliasing due to the zero padding 
applied before.

❑ Since each input data block            is terminated with                 zeros, the last                 signal samples from each output 
block            must be overlapped with (added to) the first                 signal samples of the succeeding block 
(linearity of convolution):

As we will see later on, this can result in an immense reduction in computational complexity 
(compared to the direct time-domain realization) since efficient computations of the DFT and IDFT exist.
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DFT and FFT

Linear Filtering in the DFT Domain – Part 6

DFT and linear convolution for infinite or long sequences – Part 3

First possible 
realization: the 
overlap-add method 
(continued) 

zeros

zeros

zeros

samples 
added together

samples 
added together

Input signal

Output signal



•

Digital Signal Processing and System Theory | Advanced Digital Signal Processing| DFT and FFT Slide 14

DFT and FFT

Linear Filtering in the DFT Domain – Part 7

DFT and linear convolution for infinite or long sequences – Part 4

Second possible realization: the overlap-save method

❑ Segment the input signal into blocks of length      with an overlap of length                 :

❑ Apply zero-padding for the impulse response                          to obtain a block length                                  . 

❑ Compute     –point DFTs of           and          (need to be done only once) and multiply the results:
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DFT and FFT

Linear Filtering in the DFT Domain – Part 8

DFT and linear convolution for infinite or long sequences – Part 5

Second possible realization: the overlap-save method (continued)

❑ The     –point inverse DFT                                                yields data blocks of length      with aliasing in the first                 samples. 
These samples must be discarded. The last                                    samples of           are exactly the same as the result of a linear 
convolution.

❑ In order to avoid the loss of samples due to aliasing the last                 samples are saved and appended at the beginning of 
the next block. The processing is started by setting the first                 samples of the first block to zero.
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DFT and FFT

Linear Filtering in the DFT Domain – Part 9

DFT and linear convolution for infinite or long sequences – Part 6

Second possible 
realization: the 
overlap-save method 
(continued) 

Discard

samples

Input signal
(all elements are filled)

Output signal

Copy  
samples

Copy  
samples

Discard

samples Discard                 samples
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DFT and FFT

Linear Filtering in the DFT Domain – Part 10

DFT and linear convolution for infinite or long sequences – Part 7

Partner work – Please think about the following questions and try to find answers 
(first group discussions, afterwards broad discussion in the whole group).

❑ What are the differences between the overlap-add and the overlap-save method?

……………………………………………………………………………………………………………………………………………………………………………………….

……………………………………………………………………………………………………………………………………………………………………………………….

❑ Are there advantages and disadvantages?

………………………………………………………………………………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………………………………………………………………………………..

❑ Can you think of applications where you would prefer either overlap-save or overlap-add? Please explain your choice!

………………………………………………………………………………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………………………………………………………………………………..
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DFT and FFT

Linear Filtering in the DFT Domain – Part 11

Frequency analysis of stationary signals – Leakage effect – Part 1

Preprocessing for spectral analysis of an analog signal          in practice:

❑ Anti-aliasing lowpass filtering and sampling with                   ,       denoting the cut-off frequency of the signal.

❑ For practical purposes (delay, complexity):
Limitation of the signal duration to the time interval                   
(    : number of samples under consideration,    : sampling interval).

Consequence of the duration limitation: 

❑ The limitation to a signal duration of       can be modeled as multiplication of the sampled input signal           with a 
rectangular window : 
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DFT and FFT

Linear Filtering in the DFT Domain – Part 12

Frequency analysis of stationary signals – Leakage effect – Part 2

The consequence of the duration limitation is shown using an example:

Suppose that the input sequence consists of a single sinusoid

The Fourier transform is

The Fourier transform of the window function          can be obtained as

The Fourier transform of the windowed sequence          is
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DFT and FFT

Linear Filtering in the DFT Domain – Part 13

Frequency analysis of stationary signals – Leakage effect – Part 3

Magnitude frequency response                 for               and                            : 

The windowed spectrum              is not localized to the frequency of the cosine          any more. 
It is spread out over the whole frequency range.

This is called “spectral leaking”.



•

Digital Signal Processing and System Theory | Advanced Digital Signal Processing| DFT and FFT Slide 21

DFT and FFT

Linear Filtering in the DFT Domain – Part 14

Frequency analysis of stationary signals – Leakage effect – Part 4

Properties of the rectangle windowing:

❑ First zero crossing of                at 

❑ The larger the number of sampling points     (and thus also the width of the rectangular window) the smaller 
becomes       (and thus the main lobe of the frequency response).

❑ Decreasing the frequency resolution (making the window width smaller) leads to an increase of the time 
resolution and vice versa.
Duality of time and frequency domain. 

Practical scope of the DFT:

Use of the DFT in order to obtain a sampled representation of the spectrum according to
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DFT and FFT

Linear Filtering in the DFT Domain – Part 15

Frequency analysis of stationary signals – Leakage effect – Part 5

Special case: If

then the Fourier transform is exactly zero at the sampled frequencies       except for            .  

Example:                                                  , rectangular window 

Results:

❑ DFT of                                     :                                                                               

except for            since       is exactly an integer multiple of            .
The periodic repetition of           leads to a pure cosine.  

❑ DFT of            :                                                               for                            
The periodic repetition of            is not a cosine sequence anymore.                 
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DFT and FFT

Linear Filtering in the DFT Domain – Part 16

Frequency analysis of stationary signals – Leakage effect – Part 6

Example (continued):
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DFT and FFT

Linear Filtering in the DFT Domain – Part 16

Frequency analysis of stationary signals – Leakage effect – Part 7

Example (continued):
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DFT and FFT

Linear Filtering in the DFT Domain – Part 16

Frequency analysis of stationary signals – Leakage effect – Part 8

Example (continued):
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DFT and FFT

Linear Filtering in the DFT Domain – Part 16

Frequency analysis of stationary signals – Leakage effect – Part 9

Example (continued):
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DFT and FFT

Linear Filtering in the DFT Domain – Part 17

Frequency analysis of stationary signals – Leakage effect – Part 10

Partner work – Please think about the following questions and try to find answers 
(first group discussions, afterwards broad discussion in the whole group).

❑ Why is the spectrum of a signal that you analyze using a DFT “widened” and “smeared” in general?

……………………………………………………………………………………………………………………………………………………………………………………..

……………………………………………………………………………………………………………………………………………………………………………………..

❑ What can you do in order to minimize the effect? 

……………………………………………………………………………………………………………………………………………………………………………………..

……………………………………………………………………………………………………………………………………………………………………………………..

❑ Why is a longer sequence length not always the better choice? 

……………………………………………………………………………………………………………………………………………………………………………………..

……………………………………………………………………………………………………………………………………………………………………………………..
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DFT and FFT

Linear Filtering in the DFT Domain – Part 18

Frequency analysis of stationary signals – Windowing – Part 1

Windowing not only distorts the spectral estimate due to leakage effects, it also influences the spectral resolution. 

First example:

Consider a sequence of two frequency components

where                is the Fourier transform of the rectangular window          .
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DFT and FFT

Linear Filtering in the DFT Domain – Part 19

Consideration of three cases for the relation between             and     :

❑ : The two maxima (the main lobes) for both window spectra                         and      can be separated.  

❑ : Correct values for the spectral samples, but the main lobes cannot be separated anymore.

❑ : The main lobes of                         and                         overlap.

The ability to resolve spectral lines of different  frequencies is limited by the main lobe width, which also depends on the length of  
the window impulse response    .     

Frequency analysis of stationary signals – Windowing – Part 2



•

Digital Signal Processing and System Theory | Advanced Digital Signal Processing| DFT and FFT Slide 30

DFT and FFT

Linear Filtering in the DFT Domain – Part 20

Frequency analysis of stationary signals – Windowing – Part 3

Second example:

Depicted (on the next slide) are the frequency responses                 for

with                                             and                     for different window lengths     .    
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DFT and FFT

Linear Filtering in the DFT Domain – Part 21

Frequency analysis of stationary signals – Windowing – Part 4

Second example (continued):
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DFT and FFT

Linear Filtering in the DFT Domain – Part 22

Frequency analysis of stationary signals – Windowing – Part 5

Second example (continued):
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DFT and FFT

Linear Filtering in the DFT Domain – Part 23

Frequency analysis of stationary signals – Windowing – Part 6

Approach to reduce leakage: Other window functions with lower side lobes (however, this comes with an increase of the 
width of the main lobe).

One possible (often used) window: the Hann window, defined as

Magnitude frequency response                 of the cosine-function                                after windowing with the Hann window:
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DFT and FFT

Linear Filtering in the DFT Domain – Part 24

Frequency analysis of stationary signals – Windowing – Part 7

Spectrum of the signal                                                                          after windowing with the Hann window: 

The reduction of the sidelobes
and the reduced resolution 
compared to the rectangular 
window can be clearly observed.
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DFT and FFT

Linear Filtering in the DFT Domain – Part 25

Frequency analysis of stationary signals – Windowing – Part 8

Spectrum of the signal                                                                          after windowing with the Hann window (continued):  
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DFT and FFT

Linear Filtering in the DFT Domain – Part 26

Frequency analysis of stationary signals – Comparison of window sequences – Part 1

In the following we will compare different window sequences. Before we start, some global remarks: 

❑ All windows will have the same length:               (which means that 51 coefficients are used).

❑ The windows will be centered around 0, meaning that they start at index -25 and end at index 25.

❑ From time to time the so-called Dirichlet kernel will be used. This an abbreviation for the 
following function:

❑ In the following all time sequences are normalized to have maximum amplitude of one.

❑ The magnitude frequency responses are normalized to have unity gain at frequency zero.
Johann Peter Gustav Lejeune Dirichlet,
German mathematician, 1805 – 1859

(Source: Wikipedia)
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DFT and FFT

Linear Filtering in the DFT Domain – Part 27

Frequency analysis of stationary signals – Comparison of window sequences – Part 2

Some global remarks (continued): 

❑ Creation of window sequences: 

❑ One can start with basic sequences (sin/cos, Gauss function, polynomials, …)

❑ One can combine basic sequences (by means of addition, multiplication, convolution, …)

❑ Desired shapes of sequences (their corresponding transforms):

❑ Small main lobe / large attenuation of side lobes (most of the time)

❑ Sometimes also a certain width of the main lobe (SONAR, RADAR, …)

❑ Addition of shifted (und multiplied) window sequences (overlap-add filterbanks, …)

❑ Small aliasing components (if combined with subsampling in filterbanks, …)

The more window sequences you know, the better …
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DFT and FFT

Linear Filtering in the DFT Domain – Part 28

Frequency analysis of stationary signals – Comparison of window sequences – Part 3

The simplest window
is a rectangle sequence.
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DFT and FFT

Linear Filtering in the DFT Domain – Part 29

Frequency analysis of stationary signals – Comparison of window sequences – Part 3

The simplest window
is a rectangle sequence.

Time domain:

Frequency domain:
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DFT and FFT

Linear Filtering in the DFT Domain – Part 30

Frequency analysis of stationary signals – Comparison of window sequences – Part 4

Some problems you already 
know …

… Create windows that go down 
to zero at the edges. A simple 
idea is to use a window that has 
a triangular shape (instead of a 
rectangular one).
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DFT and FFT

Linear Filtering in the DFT Domain – Part 31

Frequency analysis of stationary signals – Comparison of window sequences – Part 5

Properties to be
mentioned:

❑ Better side-lobe
attenuation

❑ Can be created as
a convolution
of two rectangle
windows

❑ Allows for overlap-
add processing
with 50 % overlap
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DFT and FFT

Linear Filtering in the DFT Domain – Part 32

Frequency analysis of stationary signals – Comparison of window sequences – Part 6

Properties to be
mentioned:

❑ Better side-lobe
attenuation

❑ Can be created as
a convolution
of two rectangle
windows

❑ Allows for overlap-
add processing
with 50 % overlap

Time domain:

Frequency domain:



•

Digital Signal Processing and System Theory | Advanced Digital Signal Processing| DFT and FFT Slide 43

DFT and FFT

Linear Filtering in the DFT Domain – Part 33

Frequency analysis of stationary signals – Comparison of window sequences – Part 8

Properties to be
mentioned:

❑ Using now sin/cos
functions

❑ First, only part of 
a cos sequence
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DFT and FFT

Linear Filtering in the DFT Domain – Part 34

Frequency analysis of stationary signals – Comparison of window sequences – Part 9

Properties to be
mentioned:

❑ Using now sin/cos
functions

❑ First, only part of 
a cos sequence

Time domain – (first order) cos window:
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DFT and FFT

Linear Filtering in the DFT Domain – Part 35

Frequency analysis of stationary signals – Comparison of window sequences – Part 10

Properties to be
mentioned:

❑ Using now sin/cos
functions

❑ Only one half of 
a cos wave is 
used (can be 
changed)

❑ Higher orders 
(powers) are 
possible

❑ Cos properties can
be exploited
(summing to a constant)
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DFT and FFT

Linear Filtering in the DFT Domain – Part 36

Frequency analysis of stationary signals – Comparison of window sequences – Part 11

Properties to be
mentioned:

Time domain – (first order) cos window:

Time domain – second order cos window:

❑ Using now sin/cos
functions

❑ Only one half of 
a cos wave is 
used (can be 
changed)

❑ Higher orders 
(powers) are 
possible

❑ Cos properties can
be exploited
(summing to a constant)
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DFT and FFT

Linear Filtering in the DFT Domain – Part 37

Frequency analysis of stationary signals – Comparison of window sequences – Part 12

Properties to be
mentioned:

❑ Using now sin/cos
functions

❑ Only one half of 
a cos wave is 
used (can be 
changed)

❑ Higher orders 
(powers) are 
possible

❑ Cos properties can
be exploited
(summing to a constant)
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DFT and FFT

Linear Filtering in the DFT Domain – Part 38

Frequency analysis of stationary signals – Comparison of window sequences – Part 13

Properties to be
mentioned:

❑ Using now sin/cos
functions

❑ Only one half of 
a cos wave is 
used (can be 
changed)

❑ Higher orders 
(powers) are 
possible

❑ Cos properties can
be exploited
(summing to a constant)
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DFT and FFT

Linear Filtering in the DFT Domain – Part 39

Frequency analysis of stationary signals – Comparison of window sequences – Part 14

Properties to be
mentioned:

❑ Using now sin/cos
functions

❑ Only one half of 
a cos wave is 
used (can be 
changed)

❑ Higher orders 
(powers) are 
possible

❑ Cos properties can
be exploited
(summing to a constant)

Time domain of kth order cos window:
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DFT and FFT

Linear Filtering in the DFT Domain – Part 40

Frequency analysis of stationary signals – Comparison of window sequences – Part 15

Properties to be
mentioned:

❑ Combining rectangle
and cos sequences

❑ Hann window
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DFT and FFT

Linear Filtering in the DFT Domain – Part 41

Frequency analysis of stationary signals – Comparison of window sequences – Part 16

Properties to be
mentioned:

❑ Combining rectangle
and cos sequences

❑ Hann window

Time domain - Hann window:
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DFT and FFT

Linear Filtering in the DFT Domain – Part 42

Frequency analysis of stationary signals – Comparison of window sequences – Part 17

Properties to be
mentioned:

❑ Combining rectangle
and cos sequences

❑ Different weighting
in order to 
minimize the 
largest side lobe

❑ Hamming window
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DFT and FFT

Linear Filtering in the DFT Domain – Part 43

Frequency analysis of stationary signals – Comparison of window sequences – Part 18

Properties to be
mentioned:

❑ Combining rectangle
and cos sequences

❑ Different weighting
in order to 
minimize the 
largest side lobe

❑ Hamming window

Time domain - Hamming window:



•

Digital Signal Processing and System Theory | Advanced Digital Signal Processing| DFT and FFT Slide 54

DFT and FFT

Linear Filtering in the DFT Domain – Part 44

Frequency analysis of stationary signals – Comparison of window sequences – Part 19

Properties to be
mentioned:

❑ Combining rectangle
and cos sequences

❑ Different weighting
in order to 
minimize the 
largest side lobe

❑ Hamming window

Time domain – General approach:

Frequency domain – General approach:
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DFT and FFT

Linear Filtering in the DFT Domain – Part 45

Frequency analysis of stationary signals – Comparison of window sequences – Part 20

Properties to be
mentioned:

❑ Combining rectangle
and cos sequences

❑ Different weighting
in order to 
minimize the 
largest side lobe

❑ Three cos sequences
(Blackman window)
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DFT and FFT

Linear Filtering in the DFT Domain – Part 46

Frequency analysis of stationary signals – Comparison of window sequences – Part 21

Properties to be
mentioned:

❑ Combining rectangle
and cos sequences

❑ Different weighting
in order to 
minimize the 
largest side lobe

❑ Three cos sequences
(Blackman window)

Time domain – General approach:

Frequency domain – General approach:
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DFT and FFT

Linear Filtering in the DFT Domain – Part 47

Frequency analysis of stationary signals – Comparison of window sequences – Part 22

Properties to be
mentioned:

❑ Combining rectangle
and cos sequences

❑ Different weighting
in order to 
minimize the 
largest side lobe

❑ Four cos sequences
(Blackman/Harris 
window)
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DFT and FFT

Linear Filtering in the DFT Domain – Part 48

Frequency analysis of stationary signals – Comparison of window sequences – Part 23

Properties to be
mentioned:

❑ Combining rectangle
and cos sequences

❑ Different weighting
in order to 
minimize the 
largest side lobe

❑ Four cos sequences
(Blackman/Harris 
window)

Time domain – General approach:

Frequency domain – General approach:
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DFT and FFT

Linear Filtering in the DFT Domain – Part 49

Frequency analysis of stationary signals – Comparison of window sequences – Part 24

Properties to be
mentioned:

❑ Dolph-Chebychev
window

❑ Optimized according
to the minimax
criterion

❑ Based on (very 
simple) poly-
nomials in the 
frequency
domain

❑ Side lobes adjusted 
to -80 dB
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DFT and FFT

Linear Filtering in the DFT Domain – Part 50

Frequency analysis of stationary signals – Comparison of window sequences – Part 25

Properties to be
mentioned:

❑ Dolph-Chebychev
window

❑ Optimized according
to the minimax
criterion

❑ Based on (very 
simple) poly-
nomials in the 
frequency
domain

❑ Side lobes adjusted 
to -80 dB

Frequency domain:
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DFT and FFT

Linear Filtering in the DFT Domain – Part 51

Frequency analysis of stationary signals – Comparison of window sequences – Part 26

Properties to be
mentioned:

❑ Dolph-Chebychev
window

❑ Optimized according
to the minimax
criterion

❑ Based on (very 
simple) poly-
nomials in the 
frequency
domain

❑ Side lobes adjusted 
to -80 dB

Some further explanations on Chebychev polynomials on the blackboard …



•

Digital Signal Processing and System Theory | Advanced Digital Signal Processing| DFT and FFT Slide 62

DFT and FFT

Linear Filtering in the DFT Domain – Part 52

Frequency analysis of stationary signals – Comparison of window sequences – Part 27

Properties to be
mentioned:

❑ Dolph-Chebychev
window

❑ Optimized according
to the minimax
criterion

❑ Based on (very 
simple) poly-
nomials in the 
frequency
domain

❑ Side lobes adjusted 
to -10 dB
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DFT and FFT

Linear Filtering in the DFT Domain – Part 53

Frequency analysis of stationary signals – Comparison 
of window sequences – Part 28

Properties to be
mentioned:

❑ Dolph-Chebychev
window

❑ Optimized according
to the minimax
criterion

❑ Based on (very 
simple) poly-
nomials in the 
frequency
domain

❑ Side lobes adjusted 
to -10 dB
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DFT and FFT

Linear Filtering in the DFT Domain – Part 54

Frequency analysis of stationary signals – Comparison of window sequences – Part 29

Properties to be
mentioned:

❑ Combining cos
and rectangle
sequences

❑ Well suited for 
extraction certain
time-domain 
parts
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DFT and FFT

Linear Filtering in the DFT Domain – Part 55

Frequency analysis of stationary signals – Comparison of window sequences – Part 30

Properties to be
mentioned:

❑ Combining cos
and rectangle
sequences

❑ Well suited for 
extraction certain
time-domain 
parts

Time domain – General approach:
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DFT and FFT

Linear Filtering in the DFT Domain – Part 56

Frequency analysis of stationary signals – Comparison of window sequences – Part 31

Properties to be
mentioned:

❑ Combining finite and
infinite windows

❑ Example: cos² and 
sin(x)/x

❑ E.g. used for 
specific beam-
forming 
applications
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DFT and FFT

Linear Filtering in the DFT Domain – Part 57

Frequency analysis of stationary signals – Comparison of window sequences – Part 32

Properties to be
mentioned:

❑ Combining finite and
infinite windows

❑ Example: cos² and 
sin(x)/x

❑ E.g. used for 
specific beam-
forming 
applications

Time domain:

Frequency domain:
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DFT and FFT

Linear Filtering in the DFT Domain – Part 58

Frequency analysis of stationary signals – Comparison of window sequences – Part 33

Properties to be
mentioned:

❑ Combining finite and
infinite windows

❑ Example: sin(x)/x 
and Chebychev
window

❑ E.g. used for 
specific beam-
forming 
applications
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DFT and FFT

Linear Filtering in the DFT Domain – Part 59

Frequency analysis of stationary signals – Comparison of window sequences – Part 34

Could be continued virtually endlessly, but for now it should be enough …



•

Digital Signal Processing and System Theory | Advanced Digital Signal Processing| DFT and FFT Slide 70

DFT and FFT

Linear Filtering in the DFT Domain – Part 59

Partner work – Please think about the following questions and try to find answers 
(first group discussions, afterwards broad discussion in the whole group).

❑ Why do we apply a window function before performing a Fourier transform?

…………………………………………………………………………………………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………………………………………………………………………………………..

❑ How do you select a window function? What prior information might be useful to know before you chose a window function? 

…………………………………………………………………………………………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………………………………………………………………………………………..

❑ Which window would you chose if you need a narrow main lobe? Is your choice optimal in some sense? 

…………………………………………………………………………………………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………………………………………………………………………………………..

Frequency analysis of stationary signals – Windowing
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DFT and FFT

Fast Computation of the DFT: The FFT – Part 1

Basics – Part 1

When computing the complexity of a DFT for the complex signals                    and complex spectra                     , we obtain

In total we need about        complex multiplications and additions

Remarks (part 1):

❑ 1 complex multiplication         4 real multiplications + 2 real additions,
1 complex addition                   2 real additions.

❑ When looking closer we see that not all operations require the above mentioned complexity:

❑ values have to be added,                      additions,

❑ for the factors                                    multiplications are not required,

❑ for             multiplications are not necessary.
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DFT and FFT

Fast Computation of the DFT: The FFT – Part 2

Basics – Part 2

Remarks (part 2):

❑ Multiplications and additions are not the only operations that should be considered for analyzing the 
computational complexity.

❑ Memory access operations, checking conditions, etc. are as important as additions and multiplications.

❑ Cost functions for complexity measures should be adapted to the individually used hardware.

Basic idea for reducing the computational complexity:

The basic idea for reducing the complexity of a DFT is to decompose the „big problem“ into several „smaller problems“. 
This usually leads to a reduction in complexity. However, this „trick“ can not always be applied.
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DFT and FFT

Fast Computation of the DFT: The FFT – Insertion Part 1

The Goertzel Algorithm

Basics:

❑ The name stems for an American physicist (1919 – 2002).

❑ The basic idea of this algorithm is to reduce the number of multiplications as much as possible if only a single DFT pin
should be computed. 

❑ The principle works also if an arbitrary frequency supporting point (not on the DFT grid) should be computed.

Number of real multiplication for a single bin:

❑ The signal          is assumed to be real.
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DFT and FFT

Fast Computation of the DFT: The FFT – Insertion Part 2

The Goertzel Algorithm

Derivation:

… inserting the abbreviation                            (twiddle factor) …

… exploiting that                                                                  …

Interpretation as a convolution (but only at one specific sample):



Interpretation as a convolution (but only at one specific sample):
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DFT and FFT

Fast Computation of the DFT: The FFT – Insertion Part 3

The Goertzel Algorithm

FIR filter with the coefficients                                   with                                            .

Example for   : Example for            :



Extending the filter:
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DFT and FFT

Fast Computation of the DFT: The FFT – Insertion Part 4

The Goertzel Algorithm

Example for             , “normal” filter:

Example for             , “extended” filter:



Some more specific look on the filter realization:
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DFT and FFT

Fast Computation of the DFT: The FFT – Insertion Part 5

The Goertzel Algorithm

… inserting the definition of the filter coefficients                                 …

… exclude one of the twiddle factors …

… multiply with a “complicatedly written 1”…



Some more specific look on the filter realization (continued): 
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DFT and FFT

Fast Computation of the DFT: The FFT – Insertion Part 6

The Goertzel Algorithm

… multiply the numerator with the sum …

… exploit that only the sums differ only in one element …

… simplify the numerator …
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DFT and FFT

Fast Computation of the DFT: The FFT – Insertion Part 7

The Goertzel Algorithm

Some more specific look on the filter realization (continued): 

… multiply with a “complicatedly written 1”…

… combine both denominators …

… split the filter into three subfilter …
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DFT and FFT

Fast Computation of the DFT: The FFT – Insertion Part 8

The Goertzel Algorithm

Some more specific look on the filter realization (continued): 

First filter, computed from             to                      :

Second filter, computed only for                      :
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DFT and FFT

Fast Computation of the DFT: The FFT – Insertion Part 9

The Goertzel Algorithm

Some more specific look on the filter realization (continued): 

Third filter, computed only for                      :
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DFT and FFT

Fast Computation of the DFT: The FFT – Insertion Part 10

The Goertzel Algorithm

Some more specific look on the filter realization (continued): 

The first filter requires one real multiplication per sample, in total N real 
multiplications.

The second filter requires two real multiplication (only for the final sample).

The third filter requires two real multiplication (only for the final sample).
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DFT and FFT

Fast Computation of the DFT: The FFT – Part 3

Radix-2 approach (decimation in time) – Part 1

For fast (efficient) realizations of the DFT some properties of the so-called twiddle factors                               can be used. 
In particular we can utilize

❑ the conjugate complex symmetry

❑ and the periodicity both for    and for

For a so-called radix 2 realization of the DFT we decompose the input series into two series of half length:
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DFT and FFT

Fast Computation of the DFT: The FFT – Part 4

Radix-2 approach (decimation in time) – Part 2

If we assume that the orignal series has an even length, we can decompose it according to

… inserting the definition of the twiddle factors …

… splitting the sum into even and odd indices …

… inserting the (signal) definitions from the last slide …
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DFT and FFT

Fast Computation of the DFT: The FFT – Part 5

Radix-2 approach (decimation in time) – Part 3

DFT decomposition (continued)

Please note that this decomposition is – due to the periodicity of                    and                    – also true for    .

DFT of length      for the signal 

DFT of length      for the signal 

… inserting the definition of a DFT (of half length) …



•

Digital Signal Processing and System Theory | Advanced Digital Signal Processing| DFT and FFT Slide 86

DFT and FFT

Fast Computation of the DFT: The FFT – Part 6

Radix-2 approach (decimation in time) – Part 4

For the computational complexity we obtain:

❑ Before the decomposition: 

1 DFT of order                                          operations.

❑ After the decomposition: 

2 DFTs of order                                                                                       operations and

combining the results                             operations.

Using this „splitting“ operation we were able to reduce the complexity form         down to                    . 
For large orders       this is about a half.
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DFT and FFT

Fast Computation of the DFT: The FFT – Part 7

Radix-2 approach (decimation in time) – Part 5

Graphical explanation of (the first stage of) the decomposition for                :

DFT
of 

order
4

DFT
of

order
4
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DFT and FFT

Fast Computation of the DFT: The FFT – Part 8

Radix-2 approach (decimation in time) – Part 6

This principle can be applied again. Therefore,          has to be even again. Then we get four DFTs of length          and another        
operations for combining those four DFTs such that we get the desired outputs. Together with the operations necessary for 
combining the low order DFTs we obtain a complexity of 

complex operations.

We can apply this principle until we reach a „minimum order“ DFT of length 2. This can be achieved if we have

As a result      has to be a power of two.
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DFT and FFT

Fast Computation of the DFT: The FFT – Part 9

Radix-2 approach (decimation in time) – Part 7

DFT
of order 

2

DFT
of order

2

DFT
of order 

2

DFT
of order 

2

Graphical explanation of (the second stage of) the decomposition for                :
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DFT and FFT

Fast Computation of the DFT: The FFT – Part 10

Radix-2 approach (decimation in time) – Part 8

As a last step we have to compute a DFT of length 2. This is achieved by:

As we can see, also over here we need the same basic scheme that we have used also in the previous decompositions:

This basic scheme is called „butterfly“ of a radix-2 FFT. The abbreviation FFT stands for Fast Fourier Transform.
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DFT and FFT

Fast Computation of the DFT: The FFT – Part 11

Radix-2 approach (decimation in time) – Part 9

When computing the individual butterfly operations we can exploit that the twiddle factors         and             differ only in 
terms of their sign. Thus, we can apply the following simplification:

This leads to a further reduction in terms of multiplications (only 50 % of them are really required).

In total we were able to reduce the required operations for computing a DFT from       down to                    by using efficient 
radix-2 approaches.

Pathes without variables using a factor of 1!

Examples:
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DFT and FFT

Fast Computation of the DFT: The FFT – Part 12

Radix-2 approach (decimation in time) – Part 10

Graphical explanation of the decomposition for                 with optimized butterfly structure:

Please keep in mind that in each stage only „in-place operations“ are required. 
This means that no now memory has to be allocated for a new stage!
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DFT and FFT

Fast Computation of the DFT: The FFT – Part 13

Graphical explanation of the decomposition for                (with keeping the „orientation“ of the input vector):

Radix-2 approach (decimation in time) – Part 11
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DFT and FFT

Fast Computation of the DFT: The FFT – Part 14

Graphical explanation of the complexity reduction on the black board …

Radix-2 approach (decimation in time) – Part 12
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DFT and FFT

Fast Computation of the DFT: The FFT – Part 15

Radix-2-decimation-in-time FFT algorithms – Part 13

In-place computations

❑ The intermediate results                     in the   -th stage,                               , are obtained as

(butterfly computations) where                                               vary from stage to stage.

❑ Only      storage cells are needed, which first contain the values          , then the results form the individual stages and
finally the values              .

In-place algorithm 
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DFT and FFT

Fast Computation of the DFT: The FFT – Part 16

❑ The         -values are ordered at the input of the decimation-in-time flow graph in permuted order.

❑ Example for             , where the indices are written in binary notation:

Radix-2-decimation-in-time FFT algorithms – Part 14

Bit-reversal

Input data is stored in bit-reversed order. Mirrored at the “center bit” in terms of binary counting!
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DFT and FFT

Fast Computation of the DFT: The FFT – Part 17

Radix-2-decimation-in-time FFT algorithms – Part 15

Bit-reversal

Bit-reversed order is due to the sorting in the even and odd indices in every stage, and thus is also necessary for in-place computation.

[ , Oppenheim, Schafer, 1999]



•

Digital Signal Processing and System Theory | Advanced Digital Signal Processing| DFT and FFT Slide 98

DFT and FFT

Fast Computation of the DFT: The FFT – Part 18

Radix-2-decimation-in-time FFT algorithms – Part 16

Inverse FFT

The inverse DFT is defined as 

that is

With additional scaling and index permutations the IDFT can be calculated with the same FFT algorithm as the DFT.  



•

Digital Signal Processing and System Theory | Advanced Digital Signal Processing| DFT and FFT Slide 99

DFT and FFT

Fast Computation of the DFT: The FFT – Part 19

FFT alternatives – Part 1

Alternative decimation-in-time (DIT) structures

Rearranging of the nodes in the signal flow graphs lead to FFTs with almost arbitrary permutation of the input and output sequence. 
Reasonable approaches are structures:

(a) without bit-reversal, or

(b) bit-reversal in the frequency domain.

The approach (a) has the disadvantage that it is a non-inplace algorithm, because the butterfly-structure does not continue 
past the first stage.

Next slides: the flow graphs for both approaches.
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DFT and FFT

Fast Computation of the DFT: The FFT – Part 20

FFT alternatives – Part 2

Alternative decimation-in-time (DIT) structures (continued)

(a) Flow graph for 

[Oppenheim, Schafer, 1999]
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DFT and FFT

Fast Computation of the DFT: The FFT – Part 21

FFT alternatives – Part 3

Alternative decimation-in-time (DIT) structures (continued)

(b) Flow graph for 

[Oppenheim, Schafer, 1999]
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DFT and FFT

Fast Computation of the DFT: The FFT – Part 22

FFT alternatives – Part 4

Decimation-in-frequency algorithms

Instead of applying the decomposition to time domain

Starting the decomposition in the frequency domain
The sequence of DFT coefficients              is decomposed into smaller sequences.

Decimation-in-frequency (DIF) FFT.
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DFT and FFT

Fast Computation of the DFT: The FFT – Part 23

FFT alternatives – Part 5

Decimation-in-frequency algorithms (continued)

Signal flow graph for 

[Proakis, Manolakis, 1996]
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DFT and FFT

Fast Computation of the DFT: The FFT – Part 24

FFT alternatives – Part 6

Radix r and mixed-radix FFTs

When we generally use

we obtain DIF or DIT decompositions with a radix    .

Besides                          and             are commonly used.
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DFT and FFT

Fast Computation of the DFT: The FFT – Part 25

FFT alternatives – Part 7

Radix r and mixed-radix FFTs (continued)

Radix-4 butterfly                                                          : 

[Proakis, Manolakis, 1999]
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DFT and FFT

Fast Computation of the DFT: The FFT – Part 26

Convolution of a finite and an infinite sequence:

We will compare now the direct convolution in the time domain with it‘s DFT/FFT counterpart. For the DFT/FFT realization we will
use the overlap-add technique.

For that purpose we will modify a music signal by means of amplifying the low and the very high frequencies of a music recording.

Realization using
Matlab!
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DFT and FFT

Fast Computation of the DFT: The FFT – Part 27

Partner work – Please think about the following questions and try to find answers 
(first group discussions, afterwards broad discussion in the whole group).

❑ What does “in-place” means and why is this property important for efficient algorithm?

…………………………………………………………………………………………………………………………………………………………………………………………….

…………………………………………………………………………………………………………………………………………………………………………………………….

❑ Which operations should be counted besides multiplications and additions when analyzing the efficiency of an algorithm? 

…………………………………………………………………………………………………………………………………………………………………………………………….

…………………………………………………………………………………………………………………………………………………………………………………………….

❑ How would you realize an FFT of order 180?

…………………………………………………………………………………………………………………………………………………………………………………………….

…………………………………………………………………………………………………………………………………………………………………………………………….

DFT and FFT:
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DFT and FFT

Transformation of Real-Valued Sequences – Part 1

If                        FFT calculation for                                                        with                   

inefficient due to arithmetic calculation with zero values

In the following: Methods for efficient usage of a complex FFT for real-valued data. 

DFT of two real sequences – Part 1

Given:

Question: How can we efficiently obtain                 and                     and by using the complex DFT?

Define

leading to the DFT
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DFT and FFT

Transformation of Real-Valued Sequences – Part 2

How to separate              into                and                ?

DFT of two real sequences – Part 2

Symmetry relations of the DFT:

with the subscripts           denoting the even part and          the odd part.

Corresponding DFTs:
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DFT and FFT

Transformation of Real-Valued Sequences – Part 3

DFT of two real sequences – Part 3

Repetition – symmetry scheme of Fourier transform:

… hope you remember ….
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DFT and FFT

Transformation of Real-Valued Sequences – Part 4

Thus, we have

DFT of two real sequences – Part 4

with

Likewise, we have for                 the relation

with
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DFT and FFT

Transformation of Real-Valued Sequences – Part 5

Rearranging both relations finally yields

DFT of two real sequences – Part 5

Due to the hermitean symmetry for real-valued sequences

only the values for                                  have to be calculated.

The values for                                                  can be derived from the values for                           .              

Application:

Fast convolution of two real-valued sequences with the DFT/FFT!
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DFT and FFT

Transformation of Real-Valued Sequences – Part 6

DFT of a 2M-point real sequence – Part 1

Given:

Wanted:

with 

Hermitian symmetry since                   for all    :      

Define

where the even and odd samples of          are written alternatively into the real and imaginary part of         . 
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DFT and FFT

Transformation of Real-Valued Sequences – Part 7

DFT of a 2M-point real sequence – Part 2

We have a complex sequence          consisting of two real-valued sequences           and           of length      with the DFT 

and                  can easily be obtained as

for 

In order to calculate                from                 and                 we rearrange the expression for                .
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DFT and FFT

Transformation of Real-Valued Sequences – Part 8

DFT of a 2M-point real sequence – Part 3

The rearranging leads to

Finally we have:

Due to the Hermitian symmetry                                              ,     only needs to be evaluated from    to      with .    
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DFT and FFT

Transformation of Real-Valued Sequences – Part 9

DFT of a 2M-point real sequence – Part 4

Signal flow graph:

Computational savings by  a factor of two compared to the complex-valued case since for real-valued input sequences 
only an     -point DFT is needed.
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DFT and FFT

Transformation of Real-Valued Sequences – Part 10

Partner work – Please think about the following questions and try to find answers 
(first group discussions, afterwards broad discussion in the whole group).

❑ How many memory elements do you need to store the result of a DFT of order M if the input sequence was real-valued?

…………………………………………………………………………………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………………………………………………………………………………..

❑ Why is it useful to operate with complex-valued sequences? 

…………………………………………………………………………………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………………………………………………………………………………..

❑ (General question) Where can you use a DFT/FFT? Application examples?

…………………………………………………………………………………………………………………………………………………………………………………………..

…………………………………………………………………………………………………………………………………………………………………………………………..

DFT of a 2M-point real sequence – Part 5
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DFT and FFT

Summary

❑ Introduction

❑ Digital processing of continuous-time signals

❑ Efficient FIR structures

❑ DFT and FFT

❑ DFT and signal processing

❑ Fast computation of the DFT: The FFT

❑ Transformation of real-valued sequences

❑ Spectral and temporal refinement

❑ Digital filters

❑ Multi-rate digital signal processing
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DFT and FFT

Spectral Refinement

The origin of it … 

Basic Idea – Part 1
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DFT and FFT

Spectral Refinement

Basic Idea – Part 2

Basis setup

❑Handsfree system with a DFT size 
of 256

❑Hann window and with an overlap of
75 % (downsampling factor = 64)

❑ Processing power was about 30 % 
too high

Microphone power

Error power at R = 128, without spectral refinement 
(complexity 50 %)

Error power at R = 128, with spectral refinement 
(complexity 55 %)

Error power at R = 64, without 
spectral refinement (complexity 100 %)
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DFT and FFT

Spectral Refinement

A standard DFT …

Basic Idea – Part 3

DFT with windowing
(overlap-add)

Time
Fr

eq
u

en
cy

Time-frequency supporting points
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DFT and FFT

Spectral Refinement

Refinement of existing supporting points

Basic Idea – Part 4

DFT with windowing
(overlap-add)

Time
Fr

eq
u

en
cy

Time-frequency supporting points
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DFT and FFT

Spectral Refinement

Example

Basic Idea – Part 5
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DFT and FFT

Spectral Refinement

Creation of new temporal points

Basic Idea – Part 6

DFT with windowing
(overlap-add)

Time
Fr

eq
u

en
cy

Time-frequency supporting points
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DFT and FFT

Spectral Refinement

Creation of new frequency points

Basic Idea – Part 1

DFT with windowing
(overlap-add)

Time
Fr

eq
u

en
cy

Time-frequency supporting points
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DFT and FFT

Spectral Refinement

Realization by FIR filters

Basic Idea – Part 7
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DFT and FFT

Spectral Refinement

Input vector:

Different way to write a windowed DFT – Part 1

DFT (or FFT) of windowed input vector:

Equidistantly selected frequency supporting points:

with
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DFT and FFT

Spectral Refinement

A “windowed DFT” in matrix-vector notation:

Different way to write a windowed DFT – Part 2

DFT matrix:

Window matrix:
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DFT and FFT

Spectral Refinement

Basic idea of spectral refinement:

Basic Idea of spectral refinement – Part 1
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DFT and FFT

Spectral Refinement

Basic idea of spectral refinement:

Basic Idea of spectral refinement – Part 2
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DFT and FFT

Spectral Refinement

Reordering (according to frequency) leads to :

Basic Idea of spectral refinement – Part 3
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DFT and FFT

Spectral Refinement

The supervector of the DFT spectra can be reformulated:

Basic Idea of spectral refinement – Part 4

Furthermore, we insert a longer time-domain vector:
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DFT and FFT

Spectral Refinement

That allows as to rewrite the equation system as follows:

Basic Idea of spectral refinement – Part 5
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DFT and FFT

Spectral Refinement

Combining everything lead to (for the refined and interpolated spectrum):

Basic Idea of spectral refinement – Part 6
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DFT and FFT

Spectral Refinement

Starting again with a longer time-domain vector:

A spectrum with higher resolution – Part 1

with                          (e.g.                  ) .

And furthermore assuming that 

A second (high resolution) spectrum can be obtained by 
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DFT and FFT

Spectral Refinement

We will restrict the long window to be a sum of weighted and shifted
short windows:

The weighting matrix is a sparse matrix of the form

The first submatrix has the form

A spectrum with higher resolution – Part 2

The remaining submatrices are equivalently defined. 
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DFT and FFT

Spectral Refinement

Inserting these restrictions for the long window functions leads to:

Comparing this with our refinement approach:

A spectrum with higher resolution – Part 3



•

Digital Signal Processing and System Theory | Advanced Digital Signal Processing| DFT and FFT Slide 138

DFT and FFT

Spectral Refinement

Setting

A spectrum with higher resolution – Part 4

leads to
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DFT and FFT

Spectral Refinement

Setting

A spectrum with higher resolution – Part 4

leads to

Can be approximated by a very sparse matrix.
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DFT and FFT

Spectral Refinement

Example for a five tab refinement filter

Realization – Part 1
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DFT and FFT

Spectral Refinement

Pitch estimation – data base

❑ Clean speech laryngograph/microphone 
database

❑ 38 speakers (18 female and 20 male)

❑Mixing to different typical automotive 
SNR conditions 

Results – Part 1

Pitch estimation – error types

❑ < 3 % absolute difference

❑ < 10 % absolute difference

❑ < 20 % absolute difference
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DFT and FFT

Spectral Refinement

Results – Part 2

Accepted tolerance High SNR Medium SNR Low SNR

Standard 
method

< 3 % 62.1 % 70.1 % 47.2 %

< 10 % 65.1 % 70.9 % 48.4 %

< 20 % 65.5 % 71.4 % 49.3 %

Spectral 
refinement up 
to 1 kHz

< 3 % 82.1 % 80.3 % 55.9 %

< 10 % 88.1 % 85.3 % 58.2 %

< 20 % 88.8 % 86.2 % 58.7 %

Spectral 
refinement up 
to 3 kHz

< 3 % 83.2 % 80.1 % 53.4 %

< 10 % 89.6 % 85.3 % 56.9 %

< 20 % 90.6 % 86.3 % 57.5 %

Pitch estimation – results

❑ Correctness of 
estimated 
fundamental 
frequencies 
without and with 
spectral refinement 
for different SNR 
and tolerance 
ranges
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DFT and FFT

Spectral Refinement

Polyphase filterbanks in the 
lecture “Adaptive Filters”

Outlook – Part 1

IDFT 
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DFT and FFT

Spectral Refinement

Polyphase filterbanks in the 
lecture “Adaptive Filters”

Outlook – Part 2
Impulse responses Magnitude frequency responses

Hann window

Coefficient index

Hann window

Prototype lowpass filter Prototype lowpass filter
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DFT and FFT

Summary

❑ Introduction

❑ Digital processing of continuous-time signals

❑ Efficient FIR structures

❑ DFT and FFT

❑ DFT and signal processing

❑ Fast computation of the DFT: The FFT

❑ Transformation of real-valued sequences

❑ Spectral refinement

❑ Digital filters

❑ Multi-rate digital signal processing


