

Advanced Digital Signal Processing

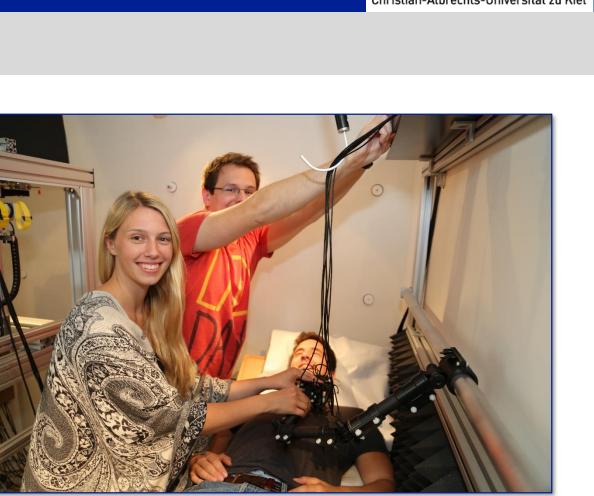
Part 3: Efficient FIR Structures

Gerhard Schmidt

Christian-Albrechts-Universität zu Kiel Faculty of Engineering Institute of Electrical and Information Engineering Digital Signal Processing and System Theory

Contents

- Digital processing of continuous-time signals
- Efficient FIR structures
- DFT and FFT
- Digital filters
- □ Multi-rate digital signal processing



Derivation – Part 1

Single output of an FIR filter

Basic formula:

$$y(n) = \sum_{i=0}^{N-1} v(n-i) h_i.$$

In vector notation:

$$\boldsymbol{v}(n) = [v(n), v(n-1), ..., v(n-N+1)]^{\mathrm{T}},$$

 $\boldsymbol{h} = [h_0, h_1, ..., h_{N-1}]^{\mathrm{T}},$
 $y(n) = \boldsymbol{v}^{\mathrm{T}}(n) \boldsymbol{h}.$

Two outputs of an FIR filter (block processing)

$$\begin{bmatrix} y(n) \\ y(n-1) \end{bmatrix} = \begin{bmatrix} v(n), & \dots, & v(n-N+1) \\ v(n-1), & \dots, & v(n-N) \end{bmatrix} \begin{bmatrix} h_0 \\ \vdots \\ h_{N-1} \end{bmatrix}$$

About 2N multiplications and additions in order to compute two output samples.

Christian-Albrechts-Universität zu Kiel

Derivation – Part 2

"Even" and "odd" signal and filter vectors

Definitions:

$$\begin{aligned} \boldsymbol{h}_{\text{even}} &= \begin{bmatrix} h_0, h_2, ..., h_{N-2} \end{bmatrix}^{\mathrm{T}}, \\ \boldsymbol{h}_{\text{odd}} &= \begin{bmatrix} h_1, h_3, ..., h_{N-1} \end{bmatrix}^{\mathrm{T}}, \\ \boldsymbol{v}_{\text{even}}(n) &= \begin{bmatrix} v(n), v(n-2), ..., v(n-N+2) \end{bmatrix}^{\mathrm{T}}, \\ \boldsymbol{v}_{\text{odd}}(n) &= \begin{bmatrix} v(n-1), v(n-3), ..., v(n-N+1) \end{bmatrix}^{\mathrm{T}}. \end{aligned}$$

Relations:

$$oldsymbol{v}_{
m odd}(n) = oldsymbol{v}_{
m even}(n-1),$$

 $oldsymbol{v}_{
m even}(n) = oldsymbol{v}_{
m odd}(n+1).$

Derivation – Part 3

Two outputs of an FIR filter (continued)

Once again:

$$\begin{array}{c} y(n) \\ y(n-1) \end{array} \right] = \left[\begin{array}{c} v(n), & \dots, & v(n-N+1) \\ v(n-1), & \dots, & v(n-N) \end{array} \right] \left[\begin{array}{c} h_0 \\ \vdots \\ h_{N-1} \end{array} \right]$$

... inserting the abbreviations ...

$$= \begin{bmatrix} \boldsymbol{v}_{\text{even}}^{\text{T}}(n) & \boldsymbol{v}_{\text{odd}}^{\text{T}}(n) \\ \boldsymbol{v}_{\text{even}}^{\text{T}}(n-1) & \boldsymbol{v}_{\text{odd}}^{\text{T}}(n-1) \end{bmatrix} \begin{bmatrix} \boldsymbol{h}_{\text{even}} \\ \boldsymbol{h}_{\text{odd}} \end{bmatrix}$$

... multiplying the matrix elements with the subvectors ...

$$= \begin{bmatrix} \boldsymbol{v}_{\text{even}}^{\text{T}}(n) \boldsymbol{h}_{\text{even}} + \boldsymbol{v}_{\text{odd}}^{\text{T}}(n) \boldsymbol{h}_{\text{odd}} \\ \boldsymbol{v}_{\text{even}}^{\text{T}}(n-1) \boldsymbol{h}_{\text{even}} + \boldsymbol{v}_{\text{odd}}^{\text{T}}(n-1) \boldsymbol{h}_{\text{odd}} \end{bmatrix}$$

$$= \underbrace{\begin{bmatrix} \mathbf{v}_{\text{even}}^{\text{T}}(n) \, \mathbf{h}_{\text{even}} + \mathbf{v}_{\text{odd}}^{\text{T}}(n) \, \mathbf{h}_{\text{odd}} - \mathbf{v}_{\text{odd}}^{\text{T}}(n) \, \mathbf{h}_{\text{even}} + \mathbf{v}_{\text{odd}}^{\text{T}}(n) \, \mathbf{h}_{\text{even}} \\ \mathbf{v}_{\text{even}}^{\text{T}}(n-1) \, \mathbf{h}_{\text{even}} + \mathbf{v}_{\text{odd}}^{\text{T}}(n-1) \, \mathbf{h}_{\text{odd}} - \mathbf{v}_{\text{odd}}^{\text{T}}(n) \, \mathbf{h}_{\text{odd}} + \mathbf{v}_{\text{odd}}^{\text{T}}(n) \, \mathbf{h}_{\text{odd}} \\ = 0 \\$$

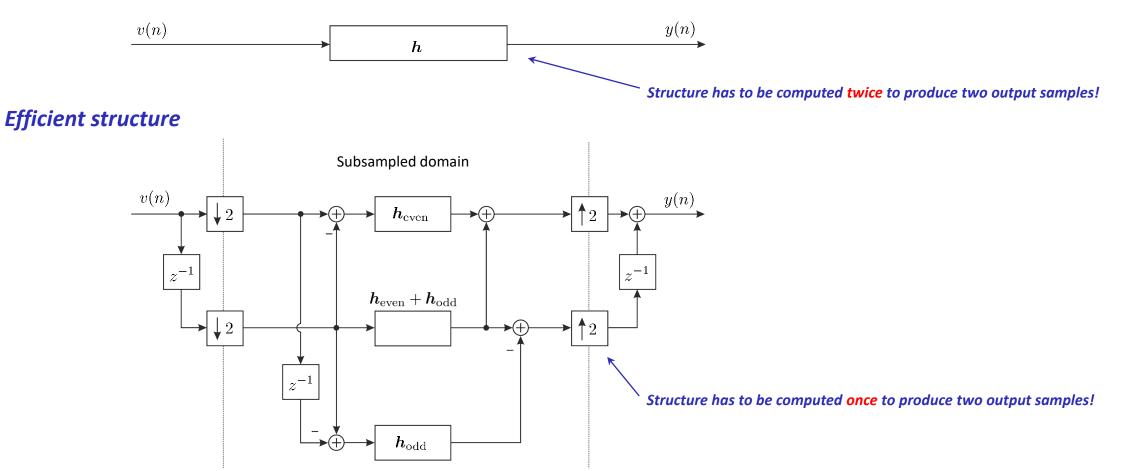
Derivation – Part 4

Two outputs of an FIR filter (continued)

About 1,5 N multiplications and additions in order to compute two output samples.

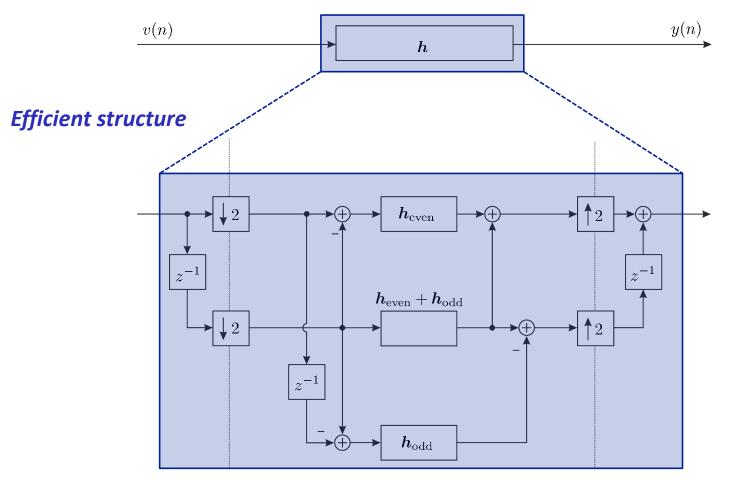
Derivation – Part 5

Basic structure



Derivation – Part 6

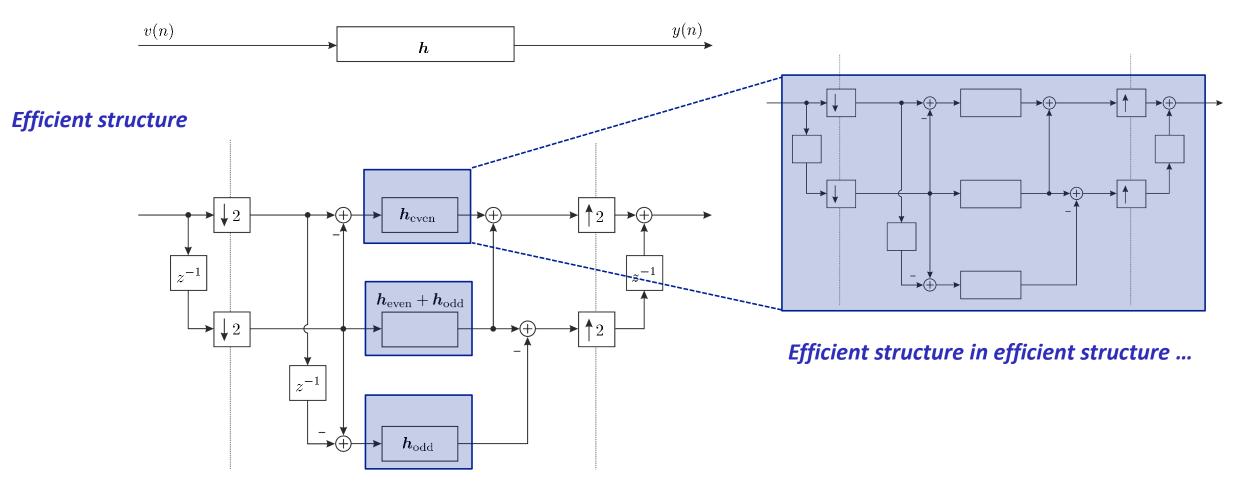
Basic structure



CAU

Derivation – Part 7

Basic structure



CAU

Derivation – Part 8

Reduction in computational complexity (for large filter orders)

Number of samples per frame	Reduction
2	25,00 %
4	43.75 %
8	57.81 %
16	68.36 %
32	76.27 %
64	82.20 %
128	86.65 %

CAU

Derivation – Part 8

Reduction in computational complexity (for large filter orders)

Number of samples per frame	Reduction
2	25,00 %
4	43.75 %
8	57.81 %
16	68.36 %
32	76.27 %
64	82.20 %
128	86.65 %

Attention: while reducing the numerical complexity often the delay is increased!

Contents

Introduction

Digital processing of continuous-time signals

Efficient FIR structures

- DFT and FFT
- Digital filters
- □ Multi-rate digital signal processing

