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1. Preface

This lab concerns the state-space representation of linear time invariant systems, which
are very important not only for the system theory but for automatic control, too. In a
description of the input and output of a system with a frequency response or the impulse
response the internal behaviour of a system is irrelevant. In contrast to that, the state
space description provides insight into the system which is described through so-called
state variables.
The purpose of all parts of this lab is the simulation of state-space described systems

which are given or have to be calculated. The simulation of time-discrete systems on a �
also discrete working � computer is possible without any problems, while time-continuous
systems must be properly transformed in a discrete representation. Due to the limited
range of numbers inside the computer, the discrete simulation contains numerical di�-
culties, as shown in task 4.4.

2. Fundamentals

In the following subsections the mathematical and system theoretical relationships are
shortly summarized.

2.1. State-space Descriptions

The state-space description of a linear time invariant system with L inputs and R outputs
in case of time-continuity can be written as

ẋ(t) = Ax(t) +B v(t), (1)

y(t) = C x(t) +Dv(t), (2)

and in case of a time discrete system

x(n+ 1) = Ax(n) +B v(n), (3)

y(n) = C x(n) +Dv(n). (4)

In a time-continuous system the vector

x(t) =
[
x0(t), x1(t), . . . , xN−1(t)

]
T
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represents the so-called state-space vector, which contains the particular state-space va-
riables xi(t), i = 0, . . . , N−1. The dimension N denotes the order of the system, in other
words the number of independent memory cells. The L input signals vl(t), l = 0, . . . , L−1
become the input signal vector

v(t) =
[
v0(t), v1(t), . . . , vL−1(t)

]
T

and the R output signals yr(t), r = 0, . . . , R− 1 become the output signal vector

y(t) =
[
y0(t), y1(t), . . . , yR−1(t)

]
T

.

The de�nition of the system state can now be formulated as: The state of a system at time
t = t0 is de�ned by all elements of the vector x(t0) = [x0(t0), x1(t0), . . . , xN−1(t0)]

T. The
knowledge of these states as well as the input signals v(t ≥ t0) is enough to determine the
system reaction y(t ≥ t0) for all times t ≥ t0. The corresponding items and de�nitions
for time-discrete systems are obtained by the substitutions t → n bzw. t0 → n0. The
matrices A, B, C and D in their entirety are called state-space matrices. The meaning
and dimension of the individual matrices are summarized in the following table:

Matrix Dimension Meaning for the system

A N ×N System matrix, describes the behaviour of the system wi-
thout input (eigen behaviour)

B N × L Input matrix, describes the connection of the system states
with the input v (steering of the system)

C R×N Observation matrix, describes the coupling of the system
states x with the outputs, (system observation)

D R× L Pass through matrix, direct connection of the input with the
output

Fig. 1 and 2 show the vectorial signal-�ow graph for a continuous respectively a discrete
system.
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Fig. 1: Vectorial signal-�ow graph of the state equations (1) and (2) for continuous sys-
tems.
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Fig. 2: Vectorial signal-�ow graph of the state equations (3) and (4) for discrete systems.

2.2. Transfer Matrix and Impulse-response Matrix

Based on the state-space matrices the transfer matrix of a LTI-system can be calculated
by

H(s) = C
[
sE −A

]−1
B +D (5)

with

H(s) =


H0,0(s) H0,1(s) · · · H0,L−1(s)
H1,0(s) H1,1(s) · · · H1,L−1(s)

...
...

. . .
...

HR−1,0(s) HR−1,1(s) · · · HR−1,L−1(s)

 (6)

for continuous systems and

H(z) = C
[
zE −A

]−1
B +D (7)

with

H(z) =


H0,0(z) H0,1(z) · · · H0,L−1(z)
H1,0(z) H1,1(z) · · · H1,L−1(z)

...
...

. . .
...

HR−1,0(z) HR−1,1(z) · · · HR−1,L−1(z)

 (8)

for discrete systems (see lecture). One element of the transfer matrix Hr,l(s) resp. Hr,l(z)
represents the transfer function between input l and output r of the system.
Important: All elements of H have di�erent numerator polynomials Zr,l(s) resp. Zr,l(z)
but a common denominator polynomial N(s) resp. N(z),

Hr,l(s) =
Zr,l(s)

N(s)
, Hr,l(z) =

Zr,l(z)

N(z)
. (9)

In a continuous system, Eq. (9) can be explained as follows (in analogy to a discrete
system with s → z):

Consider Eq. (5) where
[
sE − A

]−1
is the only factor containing s. The inverse of a

Matrix M ∈ R(N,N) can be described as

M−1 =
1

detM

[
(−1)i+jdetM ji

]
, i = 0, . . . , N − 1, j = 0, . . . , N − 1 (10)
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(compare with lectures in basic mathematics). There the sub determinants M ji are ge-
nerated by discarding the j-th row and i-th column of M . By replacing M through
[sE −A], the only component of the denominator becomes det {sE −A}. This expres-
sion represents a polynomial in s and therefore it is identical for all matrix elements
of [sE −A]−1 and hence for H(s). With h0(t) = L−1{H(s)} respectively h0(n) =
Z−1{H(z)} the impulse response matrix can be calculated from the state description as
(compare with lecture):
For continuous systems:

h0(t) = C L−1
{
[sE −A]−1

}
B +D δ0(t) (11)

with the impulse response matrix

h0(t) =


h00,0(t) h00,1(t) · · · h00,L−1(t)
h01,0(t) h01,1(t) · · · h01,L−1(t)

...
...

. . .
...

h0R−1,0(t) h0R−1,1(t) · · · h0R−1,L−1(t)

 , (12)

and thus for a discrete system

h0(n) = C Z−1
{
[zE −A]−1

}
B +D γ0(n) (13)

with the impulse response matrix

h0(n) =


h00,0(n) h00,1(n) · · · h00,L−1(n)
h01,0(n) h01,1(n) · · · h01,L−1(n)

...
...

. . .
...

h0R−1,0(n) h0R−1,1(n) · · · h0R−1,L−1(n)

 . (14)

2.3. Canonical Realization of Signal-�ow Graphs

Important for this lab are only the �rst, second and forth canonical form, while for more
(canonical and non-canonical) realizations of signal-�ow graphs the reader is referred to
the lecture. Canonical realizations stand out through independent energy storage within
their signal-�ow graph (N : Order of the system), while non-canonical realizations always
contain a high number of these storage. Systems with L inputs and R outputs can be
described with L ·R signal-�ow graphs, which belong to L ·R subsystems and connect all
inputs and outputs. All subsystems use the same state vector (that is to say they possess
the same state-space matrix A), hence the L ·R signal-�ow graphs can be rewritten to a
single signal-�ow graph. This signal-�ow graph represents a canonical realization, if the
state representations of the subsystems are given in a canonical form. An example for
this is shown in part 4.3. In the following we consider systems with only one in- and
output, so L = 1, R = 1.
The formulation of a signal-�ow graph generally starts at the di�erence equation resp.

the di�erential equation. Thus a continuous system of order N is described by

y(N)(t) + βN−1y
(N−1)(t) + · · ·+ β1ẏ(t) + β0y(t) =

αNv(N)(t) + αN−1v
(N−1)(t) + · · ·+ α1v̇(t) + α0v(t) (15)
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with

v(n) (t) =
dny (t)

(dt)n
(16)

and a discrete system by

y(k +N) + βN−1y(k +N − 1) + · · ·+ β1y(k + 1) + β0y(k) =

αNv(k +N) + αN−1v(k +N − 1) + · · ·+ α1v(k + 1) + α0v(k) (17)

where the coe�cient βN is set to one without loss of generality. The following presented
realizations describe the same system with the transfer function H(s) resp. H(z). They
di�er only by the internal representation of the states.

2.3.1. First canonical realization

The �rst canonical realization of a LTI-System is shown in Fig. 3, hence g has to be
replaced by z. Furthermore the �gure shows the state variables x1 until xN and the
coe�cients α0 until αN and β0 until βN−1 from Eq. (15) resp. Eq. (17). Considering the
state description

ẋ(t) = A1 x(t) + b1 v(t),

y(t) = c1
T x(t) + d1 v(t),

resp.

x(n+ 1) = A1 x(n) + b1 v(n),

y(n) = c1
T x(n) + d1 v(n).

the state matrices of the �rst canonical form can be got from Fig. 3

A1 =


−βN−1 1 0 · · · 0
−βN−2 0 1 · · · 0

...
...

...
. . .

...
−β1 0 0 · · · 1
−β0 0 0 · · · 0

 , b1 =


αN−1 − βN−1αN

αN−2 − βN−2αN
...

α1 − β1αN

α0 − β0αN

 , c1 =


1
0
...
0
0

 , d1 = αN

(18)
(Proof this equations!)

- --
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Fig. 3: First canonical realization.
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2.3.2. Second Canonical Realization

The second canonical form results by mirroring or transposing of the �rst canonical
realization. That is to say by changing places of inputs and outputs and reversing of all
arrows, branch- and summation knots. Using the signal-�ow graph from Fig. 4 and the
state description of the �rst canonical form in Eq. (18), the state matrices can be written
as

A2 = A1
T, b2 = c1, c2 = b1, d2 = d1. (19)

- --

6

s
αN αN−1

−βN−1

g−1 g−1

q q q

q q q
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α1 α0
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−β1
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+

xN

6
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6

?

6

?
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6

?
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s+ s+
−β0

-qv

qy

Fig. 4: Second canonical realization, resulted by mirroring of the �rst canonical form.

2.3.3. Forth Canonical Realization

The forth canonical realization is often called parallel form or diagonal form; These
names indicate to the special structure of the signal-�ow graph resp. the state-space
matrix A. This realization is obtained by partial fraction decomposition of a fractio-
nal, rational transfer function, shown here for the discrete system with single poles
z∞i, i = 0, . . . , N − 1:

H(z) =

N∑
j=0

αjz
j

N∑
k=0

βkzk

= B0 +

N∑
i=1

Bi

z − z∞i
(20)

Out of this follows the signal-�ow graph in Fig 5, from where the name "parallel form"
is explained. Assuming complete controlability, notice, that the states x0 till xN−1 are
decoupled from each other, i.e. a state xi is in�uenced only from his own past and the
input signal, but not from other states! The state-space matrices can be obtained from
the signal-�ow graph:

A4 =


z∞1 0 · · · 0
0 z∞2 · · · 0
...

...
. . .

...
0 0 · · · z∞n

 , b4 =


B1

′

B2
′

...
Bn

′

 , c4 =


C1

′

C2
′

...
Cn

′

 , d4 = B0 (21)
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Fig. 5: Forth canonical realization (parallel or diagonal form) for n single poles with
Bi = Bi

′ · Ci
′ for Eq. (20). The single states xk are decoupled from each other.

The state-space matrix A is reduced to a pure diagonal matrix of the pole locations z∞i

("diagonal form"). The Bi from Eq. (20) are here expressed as

Bi = Bi
′Ci

′, i = 0, . . . , N − 1. (22)

At �rst this decomposition of Bi seems to be needless, but will be of importance when
we look on controlability and observability in Section 2.5. However, this description is
naturally valid for continuous systems, replace z through s for a continuous description.

2.4. Transformation of State-space Variables

In the last section it was mentioned, that di�erent forms of realization describe the same
system by possessing di�erent state-space representations. Often it is useful to transform
one state-space representation to another one (e.g. to the parallel form, see below). We
will see in task 4.4 that some realizations are more numerical insensitive than others.

We are looking for a linear transformation T , which creates from a given state-space
representation with x,A,B,C,D a new representation with x̃, Ã, B̃, C̃, D̃. Inserting

x = T x̃, x̃ = T−1 x, (23)

in the state-space representation according to Eq. (1) (here for discrete systems),

T x̃(n+ 1) = ATx̃(n) +Bv(n)

x̃(n+ 1) = T−1ATx̃(n) + T−1Bv(n),

and Eq. (2),

y(n) = CT x̃(n) +Dv(n) (24)
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the transformed state-space matrices follow as

Ã = T−1AT , (25)

B̃ = T−1B, (26)

C̃ = CT , (27)

D̃ = D. (28)

In this lab given state-space representations should be transformed to the parallel form,
which contains a state matrixA in diagonal form. So we are looking for a matrix T which
creates a diagonal matrix Ã = diag{z∞i}, i = 0, . . . , N − 1 as long as T is applied to A
according (25). It is well known from the linear algebra, that this happens, if T consists of
column-wise ordered Eigenvectors from A! Then the originating diagonal matrix consists
of the Eigenvalues from A, which are identical with the pole locations z∞i of the system
(assuming simple poles) 1:

T =
[
ti

]
mit Ati = z∞i ti (29)

2.5. Controlability and Observability

The system matrix A can always be transformed in a diagonal matrix Ã, where the
roots of the denominator stay on the main diagonal. These roots of the denominator z∞i,
i = 0, . . . , N − 1 are pole locations of each single transfer function Hr,l(s) resp. Hr,l(z)
from equations (6) resp. (8), on condition that the numerator polynomial is not getting
zero at that location, i.e. z∞i = z0i. In such a situation the state-space representation of
a system has got N states, but the belonging transfer function Hr,l only the denominator
order Nr,l < N . � In other words: Not all eigenvalues of Ã are pole locations of H,
whereas the remaining eigenvalues can get lost only by multiplication of Ã with B̃
and/or C̃ (see Fig. 1 resp. 2). In such a case either missing controlability or observability
of one or more states occurs. That is explained for discrete systems in the following (mind
the analogy to continuous systems).
A system is completely controlable, if each beginning state x(n0) can be advanced in
any ending state x(n1) (with n1 > n0, i.e. to a later time step) by an input signal v(l).
Starting from the parallel form (look above), this means, that each input of the system
has to be connected with each state. This connection is made according Fig. 2 with the
"System control matrix" B. Transformation of this matrix to the parallel form leads to
a matrix B̃, and it follows: The n-th state is not controllable by the l-th input, if the
n-th row of B̃ contains a zero at the l-th position, since the matrix product B̃ · v from
Eq. (3) leads to a vector which does not contain neither value of input vl at the n-th
position (n = 0, . . . , N − 1, l = 0, . . . , L − 1). A system is completely observable, if in
any later time step (n1 > n0) each state x(n0) can be reproduced from knowledge of the
output signal y(n1), without any input signal (i.e. v(n) = 0). For this purpose each state
within the system realization as a parallel form must be connected with each output
of the system. Derived from Fig. 2 this connection is made by the "system observation
matrix" C. Transformation of this matrix to the parallel form leads to a matrix C̃, and
it follows analogical:
The n-th state is not observable by the r-th output, if the r-th row of C̃ contains a

zero at the n-th position, since the matrix product C̃ · x from Eq. (4) leads to a vector

1Of course, the same is valid for continuous systems with the substitution z → s.
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which does not contain neither value of input xn at the r-th position (r = 0, . . . , R − 1,
n = 0, . . . , N − 1).

3. Lab Preparation

3.1. Discrete System

Assume that we have a causal system with the transfer function

H(z) =
z2 − 4.5z − 2.5

z2 − 5.5z + 2.5
. (30)

(a) Calculate the poles and roots of H(z). Is the system stable? What is the impulse
response h(n) ◦−•H(z)?

(b) Determine the state-space matrices A,B,C,D in the �rst and second canonical
form and draw the corresponding signal-�ow graph.

(c) Transform the second canonical form to the parallel form. For this calculate the
transformation matrix T at �rst and perform the transformation by matrix multi-
plication. Draw also the signal-�ow graph of the parallel form.

Hint : Use Eq. (10) for inversion of the transformation matrix T.

Hint 2 : Calculate the eigenvectors of A such that the sum of squared elements
becomes equal to 1.

Important : Calculate with closed form notations of numbers, and avoid roun-
ding. (e.g.

√
3/2 instead of 0.866 . . .).

3.2. Analog Lowpass Filter

Fig. 6 shows the circuit of an analog lowpass �lter.

u (t)q u (t)aC1 2C 3C

L1R1

2R

L2

Fig. 6: Circuit of the analog �lter.

(a) What is the system order? Which order would the system have, if there was a
capacity parallel to each inductivity?

(b) Determine the state and output equations, where uq(t) resp. ua(t) represent the
input resp. output time function. State the state matrices A,B,C,D.

Hint : As a state vector suits e.g.

x(t) = [iL1(t) iL2(t) uC1(t) uC2(t) uC3(t)]
T . (31)

Digital Signal Processing and Signal Theory, Prof. Dr.-Ing. Gerhard Schmidt, www.dss-kiel.de

9



FACULTY OF ENGNEERING

KIEL UNIVERSITY

DIGITAL SIGNAL PROCESSING

AND SYSTEM THEORY

DSS

4. Lab Execution

Important: All results must be printed for later studies!

4.1. Simulation of an Analog Filter

Assume we have the analog �lter from Fig. 6 in Sec. 3.2 of the preparation. A so-called
Butterworth�Filter is obtained, if the electronic components are chosen e.g. as follows:

R1 = R2 = 1 kΩ,

C1 = C3 = 88.2 nF,

L1 = L2 = 0.231H,

C2 = 285 nF.

(32)

1. Perform a resistor and frequency normalization of the electronic components spe-
ci�ed above according

R′ =
R

RN
= 1, C ′ = 2πfPRNC, L′ =

2πfP L

RN
, (33)

where the normalized resistor and the critical pass frequency are RN = 1 kΩ and
fP = 1 kHz. Explain the sense of such a normalization!

2. Simulate all state variables and outputs by stimulation with an impulse and a step
for a period of 20 s, and choose the time-step width T between two time-steps as
T = 0.01 s (Command impulse_new, lsim_new). Use the calculated state matrices
from your preparation and the normalized values from part 1. Plot the impulse-
response and step-response as well as all state-space variables (Command subplot!)
and discuss your results.

4.2. Time Continuous System and Frequency Response

A time continuous system H(s) = Z(s)/N(s) is given in a state-space description:

A =


−0.86224 1 0 0 0
−1.6217 0 1 0 0
−0.87895 0 0 1 0
−0.53661 0 0 0 1
−0.10825 0 0 0 0

 , b =


0
0
0
0

0.10825

 , (34)

c = [1 0 0 0 0]T , d = 0. (35)

1. Which canonical form describes this state description?

If possible, make a prediction about the controlability and/or observability of the
system! Give reasons for your answer!

2. Simulate and plot the impulse and step response in a time period of 70 s with
T = 0.1 s (Commands impulse_new, lsim_new). Make a presumption on the basis
of the impulse and step response, whether the system describes a highpass or a
lowpass. Give reasons for your answer!
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3. Simulate the reaction to sine signals with the frequencies f = 0.08Hz and f =
0.4Hz in 70 s, and set each input and output together in a common plot. (Com-
mands lsim_new, subplot). Compare the results with your presumptions from part
2.

4. Determine and plot the magnitude frequency response of the system (Comman-
ds freqs, ss2tf) and validate your presumptions from parts 2 and 3. Select the
frequency axis ω = [0 : 0.001 : 0.5] ∗ 2π.

4.3. Controlability and Observability

A time continuous system with two inputs and two outputs has got the following state-
space description:

A =

[
−4 1
−3 0

]
, B =

[
2 1
1 2

]
, C =

[
1 0
0 1

]
, D =

[
1 0
0 1

]
. (36)

1. In which canonical form is the state-space description given?

2. Transform the state-space matrices to the parallel form (use the command eig

for calculation of the transformation matrix) and illustrate the signal-�ow graph
(command sfg(A,B,C,D)). Decide whether the system is completely controllable
and observable!

Why is a system representation in the parallel form for the evaluation of control
and observability better suited as a representation in another (canonical) form?

3. Determine the impulse responses of the system between all inputs by simulation
over 5 s with the step size T = 0.01 s (command impulse_new). Plot all impulse
responses in one diagram (command subplot). Furthermore calculate the transfer
matrix H(s) (command ss2tf).

4. The system above will be modi�ed now, by replacing the matrices B und C by

B =

[
1 1
1 3

]
und C =

[
−3 1
1 −1

]
(37)

Matrices A und D remain unchanged. Perform subtasks 2 and 3 again with the
changed system. Which changes concerning controlability and observability of the
system do you notice?

4.4. Numerical Sensitivity in the Di�erent Forms of Realization

1. a) Simulate the impulse response h(n) of the discrete system H(z) from Secti-
on 3.1 of the preparation. Use the second canonical form and select 100 samples
(0 ≤ k ≤ 99). Plot the obtained impulse response h(n) and state variables x1
and x2 in one MATLAB-Figure (Command subplot). Please note that the
input signal must have a length of 100 samples (see AppendixA). What result
do you get? (Commands among others: dlsim_new, displot, subplot)

b) Visualize the signal-�ow graph with sfg(A,B,C,D).
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2. a) Transform the state matrices of the second canonical form to the parallel form
(use the command eig for calculating the transformation matrix) and compare
the result with your calculation from Section 3.1(c) of the preparation.

b) Again simulate the �rst 100 samples of the impulse response and plot the
impulse response and state-space variables.

c) Visualize the signal-�ow graph with sfg(A,B,C,D).

Explain the observations you make!

3. Now type in the exact state matrices of the parallel form, which you have calculated
in 3.1(c) and repeat the simulation and graphical illustration from part 2(b) and
(c).

4. Try to explain the di�erent behaviour of the three simulated forms of realization
by comparing the signal-�ow graphs of parts 1, 2 and 3.
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A. Additional MATLAB-commands

dlsim_new Simulation of discrete LTI-systems
Call: [Y,X] = dlsim_new(A,B,C,D,U)

Parameters:
A : N ×N System matrix
B : N × L Input matrix
C : R×N Observation matrix
D : R× L Pass through matrix
U : System inputs, Q× L matrix (Q: Length of input signals)
Y : System reaction, Q×R matrix
X : Time course of the states, Q×N matrix

dlsim_new simulates the reaction of the time discrete LTI-system with order N (L
inputs, R outputs) in the state-space description

x(n+ 1) = Ax(n) +B v(n)

y(n) = C x(n) +Dv(n).

There the matrices A, B, C and D represent the state-space matrices of the system.
The matrix U describes the stimulation of the system and has got as many columns
as existing inputs, in other words: The i-th column of U describes the stimulation
at the i-th input of the system. The number of rows Q of U is determined by the
length of the input signals. The matrix Y contains the simulation result, where the
number of columns matches the number of system outputs R, and the number of
rows depends on the length Q of the input signals. The value of the state vector
during the simulation is stored row-wise in X for each step n.

See also lsim_new, impulse_new.

eig Calculation of eigenvalue and eigenvector
Call: [V,D] = eig(A)

Parameters:
A : N × N matrix, whose eigenvalues and eigenvectors will be calcu-

lated
D : Diagonal matrix, containing the i-th eigenvalue λi of A as the i-th

element on the main diagonal
V : Matrix of eigenvectors, containing in the i-th column the normali-

zed eigenvector xi which belongs to the i-th eigenvalue λi.

eig calculates the solutions of the eigenvalue problem

Axi = λixi, i = 0, . . . , N − 1. (38)
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impulse_new Simulation of the impulse response of continuous LTI-systems
Call: [Y,X] = impulse_new(A,B,C,D,iu,t)

Parameters:
A : N ×N System matrix
B : N × L Input matrix
C : R×N Observation matrix
D : R× L Pass through matrix
iu : Index of the system input, which is stimulated with the impulse
t : Equidistant timeaxis for the simulation
Y : Impulse responses, Q×R · L matrix
X : Time course of the states, Q×N matrix (Q: Length of the impulse

responses)

impulse_new simulates the impulse response of the continuous LTI-system with
order N (L inputs, R outputs) in the state description

ẋ(t) = Ax(t) +B v(t)

y(t) = C x(t) +Dv(t).

The internal transformation of the continuous system to a discrete system, which
can be used for the simulation, is done by using the impulse invariant transforma-
tion. The matrices A, B, C, D, U, Y and X have the same meaning as in the function
dlsim_new. Y contains the impulse responses of the system between all L inputs
and R outputs and has got the dimension Q×R · L, where Q is the length of the
single impulse responses in samples. The parameter iu is optional; is it speci�ed,
the simulation of the impulse response is only simulated between the iu-th input
and all R outputs. Hence, the dimension of the impulse response matrix y is redu-
ced to Q×R. t is a time axis for the simulation, which has to be given by the user.
If the time axis is speci�ed, iu must be used, too.

See also dlsim_new, lsim_new.

lsim_new Simulation of continuous LTI-systems
Call: [Y,X] = lsim_new(A,B,C,D,U,t)

Parameter:
A : N ×N System matrix
B : N × L Input matrix
C : R×N Observation matrix
D : R× L Pass through matrix
U : System inputs, Q× L matrix (Q: Length of input signals)
t : Equidistant time axis for the simulation
Y : System reaction, Q×R matrix
X : Time course of the states, Q×N matrix

lsim_new simulates the reaction of the continuous LTI-system with order N (L
inputs, R outputs) in the state-space description

ẋ(t) = Ax(t) +B v(t)

y(t) = C x(t) +Dv(t).

There the internal transformation of the continuous system to a discrete system,
usable for simulation, is done by the impulse invariant transformation. The matrices
A, B, C, D, U, Y and X have the same meaning as in the function dlsim_new.
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See also dlsim_new, impulse_new.

sfg Graphical illustration of signal-�ow graphs for systems of order two
Call: sfg(A,B,C,D)
Parameter:
A : System matrix
B : Input matrix
C : Observation matrix
D : Pass through matrix

The system described by the matrices A, B, C and D must have two inputs and two
outputs. Moreover the order mustn't be greater then two!

ss2tf Calculation of the system transfer function from the state-space description
Call: [ZAE,nen] = ss2tf(A,B,C,D,iu)

Parameter:
A : N ×N System matrix
B : N × L Input matrix
C : R×N Observation matrix
D : R× L Pass through matrix
iu : Index l (see below) of the system input, from which the transfer

function to all outputs should be calculated
ZAE : Numerator of the s-transfer function, R× (N + 1) matrix
nen : Denominator of the s-transfer function, row vector of length N +1

ss2tf determines the transfer function of a continuous system from the state-space
description, according to

h(l)(s) = C
[
sE −A

]−1
b(l) + d(l), (39)

where E represent the identity matrix and b(l) resp. d(l) are the l-th column of the
matrices B resp. D. The vector

h(l)(s) =
[
H0,l(s)H1,l(s) . . . HR−1,l(s)

]T
(40)

contains all transfer functions of the l-th input to all R outputs of the system. Each
part of the transfer function Hr,l(s) can be decomposed to a fractional, rational
function with a common denominator polynomial (look above), whose coe�cients
are speci�ed in the variable nen. The numerator polynomial belonging to Hr,l(s)
stands in the r-th row of the numerator polynomial matrix ZAE.
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