
Deep Reinforcement Learning for Cognitive SONAR Systems

Nico Neumann1, Bastian Kaulen1, Sören Christensen2, Gerhard Schmidt1
1 Digital Signal Processing and System Theory (DSS), CAU zu Kiel, Kiel, Germany, E-Mail: {nin, bk, gus}@tf.uni-kiel.de

2 Stochastics Research Group, CAU zu Kiel, Kiel, Germany, E-Mail: christensen@math.uni-kiel.de

Abstract

In recent years it has been shown that reinforcement
learning can also be used for very complex tasks with
the help of neural networks. Thereby strategies are often
found that go beyond results achieved by humans. This
allows the use in autonomous tasks in a variety of dif-
ferent areas and applications. One possible application
is to control a cognitive SONAR system. The goal is to
scan a port area optimally in order to detect and find
incoming objects as quickly as possible. Therefore, an
environment simulation was designed that represents the
port area under consideration of random occurring reflec-
tions that result in different observations for each scan as
well as the use of different novel SONAR scanning modes.
This work presents an implementation and evaluation of
an environment for the training of algorithms to enable
the autonomous observation of a port area.

SONAR Modes

The goal of the SONAR system containing a neural net-
work that was generated by deep reinforcement learning
is fast and reliable detection of objects entering a harbor
area. For this purpose, a decision is required between
three different SONAR modes which, for simplicity, dif-
fer only in the range properties and are briefly presented
in the following. These three so far novel and purely
theoretical modes are however already possible by simu-
lations.

Near field sector scan

The first mode is the near field sector scan. In this mode
adaptive filters are computed by continuous transmission
of signals, which adapt to the impulse responses in spe-
cific directions. However, in order not to overdrive the
receiving hydrophones, the transmitting power must be
reduced and this shrinks the maximum distance for pos-
sible detections. The chosen boundaries in this mode
allows a detection from ynf,min = 0m to ynf,max = 375m.
This is shown in Fig. 1 as a red shaded area.

Intermediate sector scan

The second mode is based on the principle of Multiple-
Input Multiple-Output (MIMO) signal processing in
which orthogonal signals are transmitted. This enables
intermediate sector coverage. The minimum distance is
set to yif,min = 48m, because the hydrophones can over-
drive during transmission and are therefore assumed to
be blind in the time of transmission. The maximum dis-
tance is limited by the distance dependent attenuation
and is here set to the value yif,max = 700m. This is
depicted in Fig. 1 as a blue shaded area.

Far field sector scan

The third mode is

L
en
gt
h
y
[m

]

Width x [m]
0 300

1000

Sonar

Figure 1: Visualization of the dif-
ferent sector scans. Red represents
the near field, blue the intermediate
and greed the far field scan.

also based on the
MIMO principle.
Here classical co-
herent pings are
sent in certain di-
rections one after
another. However,
the different pings
are constructed
using orthogonal
signals. There-
fore, Single-Input
Multiple-Output
(SIMO) performance
is achieved in the
specific directions.
Since the receivers could overdrive as well during trans-
mitting, the section increases, in which the SONAR
system is blind. This distance depends on the one hand
on the transmit signal length and on the other hand on
the number of pings. Here the minimum value was set to
yff,min = 675m. The maximum distance of detections is
also determined by the distance dependent propagation
and was set to yff,max = 1000m. This is shown in Fig. 1
as a green shaded area.

With these three novel modes, the neural network is
forced to find a decision, which significantly influences
the performance of the SONAR system and provides a
good first indicator if this concept of reinforcement learn-
ing is applicable in SONAR applications.

Reinforcement Learning

Reinforcement learning bases on the Markov Decision
Process (MDP) which is an extension of Markov chains
and is used for modeling decision-making situations. For
the finite case a MDP consists of a set of states S, ac-
tions A and rewards R with a finite number of elements.
The agent is the learner and decision maker while the
part it interacts with is known as the environment. The
agent selects an action and the environment responds to
this action with a new situation. The agent also receives
a reward from the environment which it tries to maxi-
mize over time by the choice of actions. The interaction
happens at each sequence of discrete time steps t. The
agent is in an environment state St ∈ S at each discrete
time step t and picks an action At ∈ A on basis of that
state. The agent then receives a reward Rt ∈ R based
on the previous selected action and is in the new state



St+1. In the first time step t = 0 the environment and
the agent are in a state St = S0 and the agent performs
an action At = A0 and receives the reward Rt+1 = R1.
Thus the agent and the environment move on to the next
state St+1 = S0+1 = S1 which represents the state in
which the environment is at the time step t + 1. In
time step t = 1 the environment is in state St = S1

and the agent takes action At = A1 and receives the re-
ward Rt+1 = R2 and the environment moves on to the
next state St+1 = S1+1 = S2. This results in a sequence
that begins as shown in Eq. 1 where the associated state,
action and reward elements for each time step are high-
lighted [3]:

(S0, A0, R1

t=0

, S1, A1, R2

t=1

, S2, A2, R3

t=2

, . . . ). (1)

A graphical representation of this interaction between the
agent and environment is given in Fig. 2 where the action
selection of the agent is based on a policy called π.

Environment

Agent

Action
At

Reward
Rt

Observation Ot

z−1

Reward
Rt+1

Observation Ot+1

Figure 2: The simplified agent-environment interaction in
reinforcement learning.

Q-learning has the ability to learn at every time step and
it is an off-policy method which allows for updates with
data collected with any policy. The policy to collect data
from the environment by interacting with it is known as
behavior policy while the (continuously) improving pol-
icy is referred to as target policy. The behavior policy
must strike a compromise between the exploration of new
options that may be better than known ones and the
exploitation of options that are already known for the
highest reward yet. This is often done with the simple
ϵ-greedy algorithm which selects a random action with a
probability of ϵ or the most popular action with a prob-
ability of 1 − ϵ. Thus the target policy is chosen to be
greedy and therefore is constantly improving. The up-
date rule is given in Eq. 2 and α (0 < α ≤ 1) indicates
the learning rate while γ (0 ≤ γ ≤ 1) is the discount
factor. The learning rate α determines how much the
state value is changed for each update while the discount
factor γ is used to weight future rewards and immediate
rewards against each other and defining their importance
[3]:

Q(St, At)← Q(St, At)︸ ︷︷ ︸
old value

+

α︸︷︷︸
learning

rate

·
[
Rt+1︸ ︷︷ ︸
reward

γ︸︷︷︸
discount
factor

·max
a

Q(St+1, a)︸ ︷︷ ︸
estimate of
optimal

future value

−Q(St, At)︸ ︷︷ ︸
old value

]
.

(2)

Rules of Environment

To define the behav-

L
en
gt
h
y
[m

]

Width x [m]
c =0 d =150 300

a =50

b =950

Valid
area

SONAR

Figure 3: The ship is placed ran-
domly between the given values of
a − d while the SONAR system is
located at the bottom middle.

ior of the environ-
ment a set of rules
is needed. The
main goal is to de-
tect an incoming ob-
ject (diver) as soon
as possible. The goal
point of the diver
is a ship that is
placed randomly be-
tween four selectable
values that define an
area in which the
ship could be placed
(Fig. 3). The diver’s
route is made up
from a definable interval (magenta-colored) from which
two points Prd1,2 are randomly picked and the diver point
PD is randomly selected from a straight line between
these two points (Fig. 4) and not known to the agent.
For simplification the shortest path between PD and the
nearest ship point is chosen and interpolated to the out-
ermost point as shown in Fig. 4 but the arrival of the
diver in the port might be delayed. To prefer the fast
finding a bonus reward B(t) was used as shown in Eq. 3:

B(t) =

{
B0 −Breduce · t, if 0 ≤ Breduce · t < B0

0, otherwise.
(3)

This bonus reward is

L
en
gt
h
y
[m

]

Width x [m]
0 300

1000

SONAR

S
h
ip

Prd1

Prd2

Route

Diver PD

Figure 4: The goal is to detect the
diver which takes the shortest way
to the ship as soon as possible.

given in addition to
the terminal state re-
ward but only for
the terminal state ST

as stated in Eq. 4.
The terminal state
is reached when the
diver arrived at the
ship or was found
idf times in a row
(successive diver de-
tections). To count
the diver as found
it has to be within
a defined distance
from the maximum
located by the SONAR system:

R′(ST ) = R(ST ) +B(t). (4)

The distance argument r of the transmission loss TL =
10 · log10(r) is choosable and offers the options: none re-
sulting in TLnone = 1, cylindrical resulting in TLcyl =
1/r and spherical resulting in TLsph = 1/r2. The port
area is represented in polar coordinates and thus has an
angle of 180◦ and a maximum distance of 1000m. The
SONAR is capable of doing ibeams = 30 beams which
results in a resolution of 6◦ while the resolution is 10m



per cell. Therefore, a 2-D array with a dimension of
30x100 is used to represent the random and calculated
signal-to-noise ratio (SNR) values. The array values are
represented by a normal (Gaussian) distribution around
the specified noise level NL. Only the diver’s position
and the ship points are calculated based on the active
SONAR equation from Eq. 5 and inserted at the appro-
priate array indices:

SE = SL− 2TL+ TS︸ ︷︷ ︸
signal

+ DI︸︷︷︸
gain

− NL︸︷︷︸
noise

− DT︸︷︷︸
threshold

. (5)

The overall signal-to-noise values val from the obser-
vation array are normalized by SLmax + DImax where
DImax is the highest directivity index of all modes and
SLmax the highest source level. Values which are out-
side of the scanning field are marked with the value
Q = 2 but this is also changeable. The normalization
is shown in Tab. 1. The diver’s position is estimated

SNR value val [dB] Normalized value
val ≤ 0 normmin = 0
val/(SLmax +DImax) (normmin . . . normmax)
SLmax +DImax ≤ val normmax = 1

outside of scanning area Q = 2

Table 1: Normalizing of the observation signal-to-noise ratio
values.

by determining the maximum SNR value in the obser-
vation array after executing the SONAR mode and re-
moving unrealistic areas. The distance between the ac-
tual diver position p(r, θ) in Polar coordinates and the
current maximum value in the SONAR observation ar-
ray is determined. Therefore, the array indexes of the
maximum value are converted back into the Polar co-
ordinates q(s, ψ) by multiplying with the corresponding
resolution. The Euclidean distance is calculated with
Eq. 6. For instance, the 2-D array index [13][90] would
be converted back to an angle of 13 · 6◦ = 78◦ and a
distance of 90 · 10m = 900m which means that the max-
imum SNR is located at q(900m, 78◦). If the diver is
located at p(905m, 80◦) the calculated distance would
be deuc,polar(p, q) ≈ 32m:

deuc,polar(p, q) =
√
r2 + s2 − 2rs cos(θ − ψ). (6)

The resulting distance is used to calculate the reward
value. The reward function is given in Eq. 7 with d being
the distance and the default values are Rmin = 0 and
Rmax = 100 and thus smaller distances gives higher re-
wards as shown in Tab. 2. The distance from the above
example would result in a reward of 3.125:

R(d) = max

(
Rmin,min

(1
d
·Rmax, Rmax

))
. (7)

Environment

The simulation is written in Python3 and provides about
26 individual configurable parameters that result from
the environment rules. An option exists to shrink the 2-D

observation array (30x100) to a 1-D array (1123x1) which
reduces the amount of inputs to the neural network. The
2-D array could be used for an image processing approach
where the values outside of the port are 0. An example
output for the near field sector scan is shown in Fig. 5.

outside of port
value of 0

outside of port
value of 0

visible
scanning
field

outside of
scanning
field
Q = 2

Figure 5: Illustration example of the near field sector scan
for the differences between the returned 2-D (full rectangle)
and 1-D (blue and black rectangle) SONAR observation.

Every time step in the en-
Distance
d [m]

Reward
R(d)

0 100
0.1 100
1 100
2 50
5 20
10 10
100 1
1000 0.1

Table 2: Expected rewards
for given distances d.

vironment simulates the be-
havior of the real-world en-
vironment. The general
flow with input and outputs
is depicted in Fig. 6. The
action is an integer number
representing the actual se-
lected action, the observa-
tion is the observation of the
environment which must al-
ways have the same shape
and size. The reward is a
floating point value repre-
senting the reward for the selected action and done in-
dicates if the training episode is finished (reached the
terminal state ST ).

Environment
simulation Observation

simulation

SONAR
Reward

evaluation

Action

RewardObservation Done?
Figure 6: Illustration of the flow for one step in the envi-
ronment.

Realization

For the training a deep Q-network (DQN) [1] algorithm
from the TensorFlow Agents1 library is used. As input to
the neural network the 1-D observation array approach

1https://www.tensorflow.org/agents



is used. The agent performs a total of 10000 iterations
where every time a full episode is collected with a re-
play buffer capacity of 1000 time steps. Initially two
episodes are collected. The batch size is 32 and the learn-
ing rate η is 10−3. The agents performance is evaluated
over 10 episodes. The environment settings were chosen
in a manner to simplify the learning process so that for
example the sending power is 100W with no transmis-
sion loss and a low background noise of µNL = 5 with
σNL = 2. The diver doesn’t use an underwater scooter
and thus swims with a speed between 0 and 1 m/s. The
maximum distance in which a diver counts as found is
100m and only the diver reflects the emitted signal. The
neural network consists of two fully-connected layers with
75 and 40 neurons. Therefore, the trainable parameters
are about 87000.

Evaluation

The average episode length of the agent ’DQN’ is quite
high with a mean of 1528.2 time steps for the training and
1506.8 time steps for the evaluation. The average return
metric is given in Fig. 7 and the minimum reward is 88.3,
the maximum is 4601.3 and the average reward is 752.5
for the training. The average reward of the evaluation
is 689.3. Especially in the last episodes the training re-
turn increased strongly and therefore also the evaluation
reward increased strongly. This indicates that a better
policy was found than the agent used in the episodes
before. Thus the agent learned that there are better ac-
tions to take to increase the total reward per episode
than the ones used before. In Tab. 3 the results of dif-

0 2,000 4,000 6,000 8,000 10,000
0

2,000

4,000

Number of episode

A
ve
ra
ge

re
w
ar
d

Training

Evaluation

Avg. train.
reward

Avg. eval.
reward

Figure 7: Visualization of the average reward metric for
training and evaluation.

ferent agents are shown. Obviously our goal of finding
the diver quickly is not important to the agent as he is
just trying to maximize the reward. Therefore, the agent
’DQN’ found an unexpected way to exploit the environ-
ment rules. The agent chooses a combination of near
field sector scan and far field sector scan while ignoring
the intermediate sector scan. The learned policy π after
10000 training iterations of the agent was to choose about
85000 times the near field scan mode and about 85000
times the far field scan mode, but nearly no intermedi-
ate scans (all numbers are on the basis of 100 episodes).
This allows to circumvent the termination condition and
maximizing the reward with this strategy.

Agent Action(s) Avg.
steps /
episode

Avg. re-
ward /
episode

random randomly chosen 470.1 641.4
near near field scan 2438.9 588.6
interm. intermediate scan 588.7 111.9
far far field scan 13.6 106.6
DQN learned policy π after

10000 iterations
1723.9 3517.4

Table 3: Results for different agents in the simplified envi-
ronment averaged over 100 episodes.

Discussion and Outlook

In this work the concept of deep reinforcement learning
was combined with SONAR to reach the goal of a cog-
nitive SONAR system. Therefore, the SONAR modes,
the simulation environment and the rules were briefly
introduced and the results of the simulation were pre-
sented. The evaluation of the agent results revealed that
the environment represents exactly what a human would
assume because the far field sector scan is the best mode
to choose if the diver appears from the upper right side.
But it also shows that the reward function is not bullet-
proof as it allows the agent to maximize the reward by
doing something else than the intended fast finding of the
diver. The high flexibility of the environment created al-
lows it to be used as a foundation for further research on
cognitive SONAR system and different deep reinforce-
ment learning algorithms. It also shows the common
problem of defining the reward function so that it exactly
does what is intended and only that. The reward func-
tion is the essential concept of reinforcement learning but
also very difficult to design [2]. Therefore, different ap-
proaches for the reward function should be tested since
there are many different methods possible. One could
give bonus rewards, discourage specific actions in spe-
cific states, give positive and/or negative rewards, limit
reward values within a range, etc. Once a bulletproof
reward function was found more modes could be imple-
mented for the cognitive SONAR so that it also takes the
energy consumption into account since it is a rare case
that a diver is in the port so a continuous scan might not
be necessary.

References

[1] Volodymyr Mnih et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–
533, February 2015. Number: 7540 Publisher: Nature
Publishing Group.

[2] Andrea Lonza. Reinforcement learning algorithms
with Python: learn, understand, and develop smart
algorithms for addressing AI challenges. Packt Pub-
lishing, 2019.

[3] Richard S. Sutton and Andrew G. Barto. Reinforce-
ment Learning: An Introduction. The MIT Press,
Cambridge, MA, USA, 2018.

[4] A. D. Waite. Sonar for Practising Engineers. Wiley,
Chichester, 2002.


