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Abstract

Speech enhancement algorithms are employed in many
applications, such as hands-free telephones, or speech
recognizers, to recover a speech signal that is recorded
in a noisy environment. In automotive environments,
the noise particularly affects the low frequencies that are
relevant for voiced speech. Detection of voiced speech
sections and estimation of the pitch frequency help to re-
construct the harmonic structure of voiced speech and to
enhance the speech signal. Many algorithms were intro-
duced to detect voiced speech and to estimate the pitch.
Most of them rely on a high spectral resolution that is
achieved by employing long window lengths. However,
some applications, such as in-car-communication (ICC)
systems, have to deal with short windows in order to re-
duce computational costs and to ensure low system laten-
cies. Resolving the pitch is difficult in this case. Spectral
refinement techniques have been introduced to increase
the spectral resolution by combining multiple consecutive
low-resolution spectra. Using these techniques, standard
pitch estimation algorithms can be applied even though
the resolution of the original spectrum was too low. In
this paper, we analyze the performance of pitch estima-
tion using spectral refinement techniques and introduce
an alternative approach that explicitly takes into account
the short windows of ICC applications.

Introduction

Speech is an intuitive way for human communication that
is employed in more and more applications. Devices,
such as the car navigation system or smartphones, can
be controlled conveniently via voice commands. Other
applications facilitate the voice communication between
humans, e.g., via hands-free telephone. In particular,
in-car-communication systems amplify the driver’s voice
and support the communication with passengers on the
backseat. By employing these systems, conversations are
possible even in noisy conditions at higher velocities [1].

Voiced speech portions, e.g., vowels are important for
correct recognition of human speech. However, the back-
ground noise in automotive environments masks espe-
cially these low-frequent components. The unvoiced
speech portions in higher frequencies are masked less but
are also less important for recognition. Therefore, robust
detection of voiced speech and estimation of the pitch fre-
quency are important problems in speech enhancement
algorithms [2].

Detection of voiced speech can be used to distinguish

speech from noise, e.g., for robust noise estimation. The
pitch frequency can be employed to reconstruct speech
that is masked by noise.

To capture the pitch information, long window lengths
are required that exceed the pitch period. Some appli-
cations, however, need shorter windows in order to re-
duce the processing delay and the computational com-
plexity. To overcome these contradicting requirements,
techniques that approximate a long window by a combi-
nation of multiple shorter windows have been introduced
in literature.

In this paper, two approaches will be discussed in more
detail:

• Spectral refinement [3] combines multiple complex-
valued spectra in order to recreate a spectrum with
a higher frequency resolution.

• Extended ACF [3] combines multiple cross-
correlations between short frames to approximate a
longer auto-correlation function (ACF).

Both techniques gain information from some previous
frames in addition to the current frame. By employing
this temporal context, pitch information can be extracted
even for very short windows.

In this contribution, the detection of harmonic compo-
nents, as well as pitch estimation will be summarized.
A conventional approach based on the auto-correlation
function is employed. Afterwards, we will consider
shorter windows and discuss the two approaches to deal
with this challenge. We will briefly summarize spectral
refinement and provide a more detailed description of the
extended ACF.

Our analyses focus on the comparison of the different
approaches. In particular, the detection performance of
voiced speech and the estimated pitch are assessed.

Pitch Estimation using ACF

First, we describe the basic principle of ACF-based pitch
estimation. Based on a frame of an audio signal

x̃(ℓ) = [x(ℓR− Ñ + 1), · · · , x(ℓR−N + 1), · · · , x(ℓR)]T ,
(1)

the ACF is determined. Here, the number of samples Ñ
that are taken into account is chosen much longer than
the expected pitch periods. The shift between two suc-
ceeding frames is denoted by R and the frame index by
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ℓ. Later in this paper, shorter frames of length N will be
considered that are too short to resolve the pitch.

The frames in time-domain are converted into the
spectral-domain

X̃(ℓ) = D̃ ·
(

h̃ ◦ x̃(ℓ)
)

(2)

by applying a window h̃ followed by a discrete Fourier-
transform (DFT) D̃. The windowing is based on an
element-wise multiplication “◦” of the two vectors.

In order to determine the pitch period, the power spectral
density is estimated and transformed back to the time-
domain to get the auto-correlation function

rx̃x̃(ℓ) = P̃ · D̃−1 ·
(

X̃
∗(ℓ) ◦ X̃(ℓ)

)

(3)

=
[

r−Ñ/2+1(ℓ), · · · , r0(ℓ), · · · , rÑ/2(ℓ)
]T

(4)

where a permutation matrix P̃ is employed to ensure that
the zeroth element is placed in the middle of the vector.

The position of the maximum of the ACF

τ̂pitch(ℓ) = argmax
τ∈{τlow,··· ,τhigh}

{rτ (ℓ)} =
fs

f̂pitch(ℓ)
(5)

is interpreted as the estimated pitch period. It is limited
to the range of human pitch periods {τlow, · · · , τhigh}.
The presence of pitch can be detected by comparing the
normalized ACF maximum value

p̂pitch(ℓ) = rτ̂pitch(ℓ)(ℓ)/r0(ℓ) (6)

to a threshold.

Shorter Windows and Combination

For some applications, shorter windows have to be em-
ployed

x(ℓ) = [x(ℓR−N + 1), · · · , x(ℓR)]T (7)

where the window length N is too short to capture the
long pitch period τhigh.

To achieve a long window of length Ñ , M = Ñ−N
R + 1

consecutive frames have to be combined. In the following
sections, two different strategies to exploit the temporal
context are described.

Spectral refinement directly combines multiple low-
resolution spectra

X(ℓ) = D · (h ◦ x(ℓ)) (8)

to approximate the high resolution spectrum X̃(ℓ)
whereas the extended ACF approach approximates the
long ACF rx̃x̃(ℓ) by means of multiple shorter correla-
tions.

Spectral Refinement

For spectral refinement, multiple low-resolution spectra
X(ℓ) are combined to approximate the high-resolution
spectrum X̃(ℓ). For this, a spectral refinement ma-

trix S ∈ C
Ñ×MN is found that maps the stacked low-

resolution spectra to a longer vector

ˆ̃
X(ℓ) = S ·

[

X
T (ℓ),XT (ℓ− 1), · · · ,XT (ℓ− (M − 1))

]T

(9)

of the approximated high-resolution spectrum. The spec-
tral refinement matrix

S = D̃ ·A ·D−1
Block (10)

comprises a transformation D
−1
Block of the stacked low-

resolution spectra back into the time-domain, a combina-
tion A of multiple time-domain signals to a longer time-
domain signal, and a transformation D̃ of the long signal
back into the frequency domain. Due to the sparseness
of the S-matrix, the refinement can be implemented very
efficiently as described in [3].

Afterwards, the ACF can be calculated using (3) based
on the approximated high-resolution spectrum.

Extended ACF

Now, we approximate the long auto-correlation rx̃x̃(ℓ) by
a combination of shorter cross-correlations (CCF)

cxx(ℓ,∆ℓ) = P ·D−1 · (X∗(ℓ) ◦X(ℓ−∆ℓ)) (11)

=
[

c−N/2+1(ℓ,∆ℓ), · · · , c0(ℓ,∆ℓ), · · · , cN/2(ℓ,∆ℓ)
]T

.
(12)

In contrast to spectral refinement, the element-wise mul-
tiplication in (11) is a non-linear operation that cannot
perfectly be reverted using a linear matrix multiplica-
tion. However, we know which elements of the CCFs are
relevant for the ACF and can compensate the envelope
caused by the window functions.

For this, we calculate a weighted sum of normalized CCFs

r̃τ (ℓ) = βτ ·

(M−1)/2
∑

ℓ̃=0

cτ−ℓ̃R(ℓ, ℓ̃)
√

c0(ℓ, 0) · c0(ℓ− ℓ̃, 0)
· ατ−ℓ̃R (13)

where the weighting coefficients α are chosen in a way
that the envelope after the summation is flat. The coef-
ficients β then recreate the desired envelope of the long
ACF as illustrated in Figure 1.

To determine the envelopes, we consider a constant exci-
tation x(n) = 1. Then, we get a short envelope

e = P ·D−1 · (D∗
h
∗ ◦Dh) (14)

=
[

e−N/2+1, · · · , e0, · · · , eN/2

]T
(15)

based on the short window h and analogously a long
envelope ẽ based on the long window h̃.

The coefficients βτ directly correspond to the desired long
envelope ẽτ .
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Figure 1: Example of the weighting functions for extended
ACF: a) The different cross-correlations (11) (solid lines) are
weighted with α (16) (dashed lines) and summed up. b) This
weighted sum (black solid line) with a flat envelope is then
reshaped by β (black dashed line) to approximate the ACF.
c) The extended ACF (13) (red solid line) approximates the
long ACF (3) (blue solid line) well.

In contrast, the weighting coefficients α are chosen such
that

H ·α = H ·
[

α−N/2+1, · · · , α0, · · · , αN/2

]T
= 1R×1

(16)

to provide perfect reconstruction of a flat envelope. For
this, a matrix

H =
[

d−N/2+1,d−N/2+R+1, · · · ,dN/2−R+1

]

(17)

is defined that is composed of multiple diagonal matrices

di =















ei 0 0 0 0
0 ei+1 0 0 0
... 0

. . . 0
...

0 0 0 ei+R−2 0
0 0 0 0 ei+R−1















(18)

containing the values of the short envelope.

To solve (16) for α, the pseudo-inverse H
+ of H is em-

ployed. Additional constraints guarantee a symmetric
weighting coefficient vector and a continuous shape.

Using this technique, only the CCFs between the current
frame and some previous frames are taken into account.
To capture also the information from CCFs between pre-
vious frames, temporal smoothing

r̂τ (ℓ) =
1

L̃

L̃−1
∑

ℓ̃=0

r̃τ (ℓ− ℓ̃) (19)

can be applied. Choosing L̃ = M/2, almost the same
context is considered as for the ACF of a long window.
Alternatively, the smoothing can be realized with a re-
cursive filter to save memory and computational costs.

Further simplifications can be achieved by calculating
only the relevant CCFs that cover the range of human
pitch periods.

Experiments

For our analyses, we consider a configuration that is typi-
cal for real-time applications with critical latency require-
ments, such as ICC applications. For a sampling rate
fs = 16 kHz, short Hann windows of 128 samples with
an overlap of 75% are chosen. Using this configuration,
a single frame is not sufficient to resolve the pitch. We
therefore target on extending the search range for the
pitch period by considering some previous frames. Both
techniques, spectral refinement and extended ACF, are
applied in order to achieve an effective window length of
1024 samples.

First, the performance is illustrated for an artificial sig-
nal. A harmonic signal is sweeped in the typical range of
the human pitch frequencies between 300Hz and 60Hz.
For this signal, the ACF is estimated by means of the
different approaches.

The estimated ACFs for a long and a short window, as
well as the approximations using spectral refinement and
extended ACF are shown in Figure 2. As expected, the
short window does not capture the relevant frequency
range of human pitch periods. In contrast, the long ACF
and both approximations cover the full range.
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Figure 2: Example comparison of different methods for ACF
estimation for a harmonic frequency sweep: ACF based on a
long window of 64ms and a short window of 8ms as well
as estimated ACFs with an effective length of 64ms using
spectral refinement and extended ACF. The typical range of
human pitch periods is indicated by black lines.

To get an impression of the performance for the detection
of harmonic components and pitch estimation, both fea-
tures are determined for the four variants as depicted in
Figure 3. Again, it is obvious that the short window does
not reasonably capture the pitch: the voicing feature does
not follow the correct shape. All other approaches, how-
ever, provide the same results for the voicing feature and
the pitch estimate. For this artificial example therefore
all approaches with long effective windows are applicable.

A second experiment targets on the detection perfor-
mance in a realistic noise scenario. Speech data from the
TIMIT database [5] was mixed with automotive noise
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Figure 3: Voicing feature and pitch estimate of the harmonic
frequency sweep. Using a short window, the pitch is not rea-
sonably captured whereas all other approaches provide almost
the same results.

taken from UTD-CAR-NOISE [6]. A variety of noises
and SNRs was taken into account to investigate realistic
conditions.

The receiver operation characteristic (ROC) curve in Fig-
ure 4 illustrates the results. The curve for a short window
is close to the diagonal which indicates again an insuffi-
cient detection performance. All other approaches show
the same performance which underlines that spectral re-
finement and extended ACF both are capable to increase
the effective window length.

Comparing the computational costs of the approxima-
tions, both approaches appear to be on a similar level.
Spectral refinement requires M ·N/2+M ·N operations
[4] in addition to a long IFFT of order Ñ ld(Ñ). In con-
trast, M/2 shorter IFFTs of order N ld(N) have to be
calculated for the extended ACF.
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Figure 4: ROC curve: detection of voiced speech in auto-
motive noise. The performance of all approaches with a long
effective window is almost the same.

Conclusions

In this paper, two approaches to extend the effective win-
dow length for detection of voiced speech and pitch es-
timation have been summarized and discussed. Spec-
tral refinement targets on extending the resolution of a
spectrum by incorporating information from the past. In
contrast, extended ACF considers the temporal context
by combining multiple short cross-correlations between
current and previous frames. Our analyses confirmed
that both approaches for combining short windows are
capable to approximate an ACF for a longer window.
Almost the same detection and estimation performance
was achieved for all the approaches with a long effective
window.
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